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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe Wednesday, September 5, 2018
Prof. Alan Guth

COURSE INFORMATION

INSTRUCTOR: Alan H. Guth, Room 6-322, Ext. 3-6265, guth@ctp.mit.edu.

TEACHING ASSISTANT: Honggeun Kim, hgkim@mit.edu.

LECTURE HOURS: Mondays and Wednesdays, 11:05 a.m. – 12:25 a.m., in Room
4-231.

REQUIRED TEXTBOOKS:

Introduction to Cosmology, Second Edition (Cambridge University Press, 2016),
by Barbara Ryden.

The First Three Minutes, 2nd paper edition (Basic Books, 1993), by Steven
Weinberg.

RECOMMENDED BOOKS:

An Introduction to Modern Cosmology, 2nd Edition (Wiley, 2003), by Andrew
Liddle.

The Inflationary Universe (Perseus Books, 1997), by Alan H. Guth. This was
written as a popular-level book, and therefore has no equations. It does not,
however, shy away from trying to explain the relevant principles of physics and
their logical connections. It attempts a kind of story-telling flavor, describing
the history of twentieth century cosmology, and also the story of my own in-
volvement in cosmology. The course will in no way follow this book, but you
might like it.

LECTURE NOTES AND OTHER READING:

There is no textbook that I know of that is really appropriate for the intended content
of this course, although Barbara Ryden’s book, Introduction to Cosmology, comes
much closer than any book I have seen previously. Steven Weinberg’s The First Three
Minutes is a superbly written book which gives an excellent description of cosmology in
general, and the synthesis of the light chemical elements in particular. But it does not
describe the mathematical details. It has a mathematical appendix, but the description
there is very sketchy. We will try to fill in some of the mathematics behind Weinberg’s
descriptions in class.

The bulk of the course, nonetheless, will be based on lecture notes that will be
posted periodically on the course website. The material in these lecture notes will be
essential for doing the problem sets and quizzes, and will form the backbone of the
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course. (Incidentally, David Kaiser and I are currently working on an undergraduate

textbook on cosmology, which will be mainly based on these lecture notes.)

For the first part of the course (classical cosmology), the lectures and the associated

lecture notes will describe the subject at a level of detail that is much more mathematical

than Weinberg’s book, and a little beyond the level of Ryden’s book. For the second part

of the course (modern particle physics and its recent impact on cosmology), we will rely

mostly on the lecture notes, although Ryden does have a good chapter on inflation. You

will also be asked to read several articles from Scientific American or similar publications.

GRADING:

75% of the course grade will be based on quizzes, which will be given in class during

the normal lecture period. There will be three of these quizzes, and there will be no final

exam. The remaining 25% of the grade will be based on problem sets. Problem sets

will normally be assigned every week, but there will be some breaks due to holidays and

in-class quizzes. There will be 9 or 10 problem sets altogether.

TENTIVE DATES FOR IN-CLASS QUIZZES:

1) Wednesday, October 3, 2018 (8 preceding classes)

2) Monday, November 5, 2018 (7 classes since first quiz)

3) Wednesday, December 5, 2018 (7 classes since second quiz)

SPECIAL RELATIVITY:

I think that many of you have studied some special relativity, but special relativity

is not a prerequisite for this course. For the benefit of those who have not studied special

relativity, the basic results are summarized in Lecture Notes 1. I expect that you will be

able to understand and occasionally use these statements, but we will not discuss how

they are derived. For those who are interested, a few references are mentioned in Lecture

Notes 1. I would be happy to talk to students outside of class about how the results

of special relativity are derived, or anything else about special relativity. There will be

a few more results from special relativity that will be needed as the course progresses

(E = mc2, for example), and I will try to point them out and summarize them carefully

as we go along.
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COURSE OUTLINE:

1. Doppler Effect (and a little Special Relativity)

2. Kinematics of Newtonian Cosmology

3. Dynamics of Newtonian Cosmology

4. Introduction to Non-Euclidean Spaces

5. Black-Body Radiation and the Early History of the Universe

6. The Accelerating Universe and the Cosmological Constant

7. Big-Bang Nucleosynthesis

8. Problems of the Conventional (Non-Inflationary) Hot Big Bang Model

9. Grand Unified Theories and the Magnetic Monopole Problem

10. The Inflationary Universe Model

11. Primordial Density Fluctuations and the Cosmic Microwave Background

12. Eternal Inflation and the Multiverse

HOMEWORK LOGISTICS

Problem sets will ordinarily be due at 5:00 pm on Fridays, to be turned in at the
homework boxes at the intersection of buildings 8 and 16 (3rd floor bldg. 8, 4th floor
bldg.16). You may also email your problem sets, sending them both to hgkim@mit.edu
and guth@ctp.mit.edu. The first problem set will be due on Friday, September 14, 2018.

The problem sets will not all be assigned the same number of points. Your final
problem set grade will be the total number of points you receive, divided by the number
of points possible. Problem sets with more assigned points, therefore, will count more
toward your grade.

All problem sets will count, none will be dropped. My reason for this policy is that
I feel that the problem sets are an important component of the course, so I want to
encourage you to do every one of them. However, I am fully aware that MIT students
are active people who lead complicated lives, and that these complications can make it
hard to turn in a problem set every week at 5 pm on Friday. So, to make up for the fact
that no problem set grades will be dropped, I will be generous with extensions, while still
expecting students to do all the problem sets during the term. If you find that you are
having an unusually busy week and cannot fit in the 8.286 problem set, I’m okay with
giving you an extension — just send an email describing the situation, and ask me for an
extension.
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HOMEWORK POLICY:

In this course I regard the problem sets primarily as an educational experience,
rather than a mechanism of evaluation. I have allocated 25% of the grade to problem
sets in order to encourage you to do them, and to make life easier for students who
find it difficult to do well on quizzes. You should feel free to work on these problems in
groups, and I would strongly encourage you to do so. With the right mix of students,
the homework can be more fun and more illuminating. I will in fact soon be setting up
a Class Contact webpage to help you make contact with each other.

However, it is important pedagogically that each student write up the solution in-
dependently. The simple copying of a friend’s paper is not the kind of effort that the
grading is intended to encourage. Using 8.286 solutions that have been circulated in
previous years is strictly off limits. Using other sources, such as other textbooks or web
documents, is considered perfectly okay, as long as you write up the solution in your own
words.

A homework problem which appears to be copied from another student, from a
solution circulated in a previous term, or copied more or less verbatim from some other
source (without rewriting in your own words) will be given a reduced grade, possibly a
zero. Except in blatant cases, however, students will be given a warning the first time
this happens, and will be given an opportunity to redo the relevant solutions. Since the
homework is intended primarily for learning, and not evaluation, there is nothing that
you can do on the homework — in this course — that will lead to an interview with the
Committee on Discipline. I say this because I want to strongly encourage you to work in
groups on the homework, and I don’t want you to feel that there are any hidden dangers.
(Remember, however, that you should not assume that this policy holds in other classes;
different professors have different points of view on these issues.)

MORE ADVANCED READING:

There are some excellent graduate-level textbooks on cosmology that some of you
might want to look at. These books are well beyond the level of this course, but I mention
them in case any of you become interested in pursuing some topic at a more advanced
level. The first two are written from the astrophysical point of view, while the last five
describe the early universe more from the particle physicists’ slant:

Cosmological Physics (Cambridge University Press, 1999), by John A. Peacock.

Principles of Physical Cosmology (Princeton University Press, 1993), by P.J.E.
Peebles.

Cosmology (Oxford University Press, 2008), by Steven Weinberg.

Modern Cosmology (Academic Press, 2003), by Scott Dodelson.
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Physical Foundations of Cosmology (Cambridge University Press, 2005), by
Viatcheslav Mukhanov.

The Early Universe (Addison-Wesley, 1990), by Edward W. Kolb and Michael S.
Turner.

Particle Physics and Inflationary Cosmology (Harwood Academic publishers,
1990), by Andrei Linde.

THE COURSE WEBSITE:

http://web.mit.edu/8.286/www

We will use the Gradebook of the Stellar system, but all course information will be posted
at the URL above.
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Physics Department

Physics 8.286: The Early Universe September 6, 2018
Prof. Alan Guth

Lecture Notes 1

THE DOPPLER EFFECT AND SPECIAL RELATIVITY

INTRODUCTION:

Probably the centerpiece of modern cosmology is what is usually called Hubble’s
law, attributed to a classic 1929 paper by Edwin Hubble.* The law states that all the
distant galaxies are receding from us, with a recession velocity given by

v = Hr . (1.1)

Here
v ≡ recession velocity,

H ≡ the Hubble constant,

and r ≡ distance to galaxy.

Starting about 2011 there has been some degree of dispute about the attribution of
Hubble’s law, because it turns out that the law was stated clearly in 1927 by the Belgian
priest Georges Lemâıtre,† who deduced it theoretically from a model of an expanding
universe, and estimated a value for the expansion rate based on published astronomical
observations. It was certainly Hubble, however, who developed the observational case
for what we now call Hubble’s law. (We at MIT, however, have every reason to tout
the contributions of Lemâıtre, who in the same year, 1927, received a Ph.D. in physics
from MIT.) The controversy over the attribution of Hubble’s law has led to a fascinating
literature discussing paragraphs mysteriously missing from the English translation of
Lemâıtre’s 1927 paper, and ultimately the resolution of that mystery. The interested
reader can pursue the links provided in the footnotes.¶ In any case, it seems clear that

* Edwin Hubble, “A relation between distance and radial velocity among extra-galactic
nebulae,” Proceedings of the National Academy of Science, vol. 15, pp. 168-173 (1929).
† Georges Lemâıtre, “Un Univers homogène de masse constante et de rayon croissant,

rendant compte de la vitesse radiale des nébuleuses extra-galactiques,” Annales de la
Société Scientifique de Bruxelles, vol. A47, pp. 49-59 (1927). Translated into English
as “A homogeneous universe of constant mass and increasing radius accounting for the
radial velocity of extra-galactic nebulae,” Monthly Notices of the Royal Astronomical
Society, vol. 91, pp. 483-490 (1931).
¶ See, for example, “Edwin Hubble in translation trouble,” http://www.nature.com/

news/2011/110627/full/news.2011.385.html#B5, and also “Hubble cleared,” http://
www.nature.com/nature/journal/v479/n7372/full/479150a.html.

http://www.pnas.org/content/15/3/168
http://www.pnas.org/content/15/3/168
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1931MNRAS..91..483L&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1931MNRAS..91..483L&amp;data_type=PDF_HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf
http://www.nature.com/news/2011/110627/full/news.2011.385.html##B5
http://www.nature.com/news/2011/110627/full/news.2011.385.html##B5
http://www.nature.com/nature/journal/v479/n7372/full/479150a.html
http://www.nature.com/nature/journal/v479/n7372/full/479150a.html
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Hubble’s law will continue to be called Hubble’s law, and that seems right to me. The

question of whether the universe is expanding or not is really an observational one, and

it was Hubble who made the first of these observations.

Later we will begin to talk about the implications of Hubble’s law for cosmology,

but for now I just want to discuss how the two ingredients — velocities and distances —

are measured. Here we will consider the measurement of the velocities, which is done by

means of the Doppler shift. The other ingredient in Hubble’s law, the cosmic distance

ladder, is described in Chapter 2 of Weinberg’s The First Three Minutes, and will

not be discussed in these notes. (You are expected, however, to learn about it from

the reading assignment. It is also discussed in Sec. 7.4 of Ryden’s Introduction to

Cosmology, but we will not be reading that until later in the course, if at all.)

The Doppler shift formula for light requires special relativity, which is not a pre-

requisite for this course. For this course it will be sufficient for you to know the basic

consequences of special relativity, which will be stated in these notes. If you would like

to learn more about special relativity, however, you could look at Special Relativity,

by Anthony P. French, Introduction to Special Relativity, by Robert Resnick, or

Lecture Notes I and II of the 2009 Lecture Notes for this course.

THE NONRELATIVISTIC DOPPLER SHIFT:

It is a well-known fact that atoms emit and absorb radiation only at certain fixed

wavelengths (or equivalently, at certain fixed frequencies). This fact was not understood

until the development of quantum theory in the 1920’s, but it was known considerably

earlier. In 1814-15 the Munich optician Joseph Frauenhofer allowed sunlight to pass

through a slit and then a glass prism, and noticed that the spectrum which was formed

contained a pattern of hundreds of dark lines, which were always found at the same colors.

Today we attribute these dark lines to the selective absorption by the cooler atoms in

the atmosphere of the sun. In 1868 Sir William Huggins noticed that a very similar

pattern of lines could be seen in the spectra of some bright stars, but that the lines were

displaced from their usual positions by a small amount. He realized that this shift was

presumably caused by the Doppler effect, and used it as a measurement of the velocity

of these distant stars.

As long as the velocities of the stars in question are small compared to that of light,

it is sufficient to use a nonrelativistic analysis. We will begin with the nonrelativistic

case, and afterward we will discuss how the calculation is changed by the implications of

special relativity. To keep the language manifestly nonrelativistic for now, let us consider

first the Doppler shift of sound waves. Suppose for now that the source is moving and
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the observer is standing still (relative to the air), with all motion taking place along a
line. We will let

u ≡ velocity of sound waves,

v ≡ recession velocity of the source,

∆tS ≡ the period of the wave at the source,

∆tO ≡ the period of the wave as observed.

Now consider the following sequence, as illustrated below:

(1) The source emits a wave crest.
(2) At a time ∆tS later, the source emits a second wave crest. During this time

interval the source has moved a distance ∆` = v∆tS further away from the
observer.

(3) The stationary observer receives the first wave crest.
(4) At some time ∆tO after (3), the observer receives the second wave crest.

Our goal is to find ∆tO.

The time at which the first wave crest is received depends of course on the distance
between the source and the observer, which was not specified in the description above.
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We are interested, however, only in the time difference ∆tO between the reception of
the first and second wave crests. This time difference does not depend on the distance
between the source and the observer, since both wave crests have to travel this distance.
The second crest, however, has to travel an extra distance

∆` = v∆tS , (1.2)

since the source moves this distance between the emission of the two crests. The extra
time that it takes the second crest to travel this distance is ∆`/u, so the time between
the reception of the two crests is

∆tO = ∆tS +
∆`

u

= ∆tS +
v∆tS
u

=
(

1 +
v

u

)
∆tS .

(1.3)

The result is usually described in terms of the “redshift” z, which is defined by the
statement that the wavelength is increased by a factor of (1 + z). Since the wavelength
λ is related to the period ∆t by λ = u∆t, we can write the definition of redshift as

λO
λS

=
∆tO
∆tS

≡ 1 + z , (1.4)

where λS and λO are the wavelength as measured at the source and at the observer,
respectively. Combining this definition with Eq. (1.3), we find that the redshift for this
case is given by

z = v/u (nonrelativistic, source moving). (1.5)

Suppose now that the source stands still, but the observer is receding at a speed v:
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In this case, the sequence becomes

(1′) The source emits a wave crest.
(2′) At a time ∆tS later, the source emits a second wave crest. The source is

standing still.
(3′) The moving observer receives the first wave crest.
(4′) At a time ∆tO after (3′), the observer receives the second wave crest. During

the time interval between (3′) and (4′), the observer has moved a distance
∆` = v∆tO further from the source.

Using the same strategy as in the first case, we note that in this case, the second wave
crest must travel an extra distance ∆` = v∆tO. Thus,

∆tO = ∆tS +
∆`

u
= ∆tS +

v∆tO
u

. (1.6)

In this case ∆tO appears on both sides of the equation, but we can easily solve for ∆tO
to find

∆tO =
(

1− v

u

)−1
∆tS . (1.7)

Recalling the definition of z,

z =
∆tO
∆tS

− 1 =
1

1− (v/u)
− 1

=
v/u

1− (v/u)
(nonrelativistic, observer moving).

(1.8)
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Notice that the difference between the two cases is given by

zobserver moving − zsource moving =
(v/u)2

1− (v/u)
, (1.9)

which is proportional to (v/u)2. If the speed of recession is much smaller than the wave
speed, v/u� 1, then the difference between the two expressions for z is very small, since
it is proportional to the square of the small quantity v/u. Buf if the speed of recession
is comparable to the wave speed, then the difference between the two expressions can be
very significant.

THE DOPPLER SHIFT FOR LIGHT WAVES:

To derive the Doppler shift for light waves, one must decide which, if either, of the
above calculations is applicable.

During the 19th century physicists thought that the situation for light waves was
identical to that for sound waves. Sound waves propagate in air, and it was thought that
light waves propagate in a medium called the aether which permeates all of space. The
aether determines a privileged frame of reference, in which the laws of physics have their
simplest form. In particular, Maxwell’s equations were believed to have their usual form
only in this frame, and it is in this frame that the speed of light was thought to have its
standard value of c = 3.0 × 108 m/sec in all directions. In a frame of reference which is
moving with respect to the aether, the speed of light would be different. Light moving in
the same direction as the frame of reference would appear to move more slowly, since the
observer would be catching up to it. Light moving in the opposite direction would appear
to move faster than normal. Thus, if the source is moving with respect to the aether and
the observer is standing still, then the first calculation shown above would apply. If the
observer is moving with respect to the aether and the source is standing still, then the
second would apply. In either case one would of course replace the sound speed u by the
speed of light, c.

In 1905 Albert Einstein published his landmark paper, “On the Electrodynamics
of Moving Bodies”, in which the theory of special relativity was proposed. The entire
concept of the aether, after half a century of development, was removed from our picture
of nature. In its place was the principle of relativity: There exists no privileged frame
of reference. According to this principle, the speed of light will always be measured at
the standard value of c, independent of the velocity of the source or the observer. The
theory shook the very foundations of physics (which is in general a very risky thing to
do), but it has become clear over time that the principle of relativity accurately describes
the behavior of nature.

Since special relativity denies the existence of a privileged reference frame, it can
make no difference whether it is the source or the observer that is moving. The Doppler
shift, and for that matter any physically measurable effect, can depend only on the
relative velocity of source and observer.

https://einsteinpapers.press.princeton.edu/vol2-trans/154
https://einsteinpapers.press.princeton.edu/vol2-trans/154
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THE DEVELOPMENT OF SPECIAL RELATIVITY:

On the face of it, the principle of relativity appears to be self-contradictory. It does
not seem possible that the speed of light could be independent of the velocity of the
observer. Suppose, for example, that we observe a light pulse which passes us at speed
c. Suppose then that a second observer takes off after the light pulse in “super-space-
ship” that attains a speed of 0.5c relative to us. Surely, one would think, the space ship
observer would tend to catch up to the light pulse, and would measure its speed at 0.5c.
How could it possibly be otherwise?

The genius of Albert Einstein is that he was able to figure out how it could be
otherwise. The subtlety and the brilliance of the theory lie in the fact that it forces
us to change our most fundamental beliefs about the nature of space and time. We
have to accept the idea that at high velocities (i.e., velocities not negligible compared
to that of light), some of our ingrained intuitions about space and time are no longer
valid. In particular, we have to accept the notion that measurements of time intervals,
measurements of lengths, and judgments about the simultaneity of events can all depend
upon the velocity of the observer. We can, however, maintain our notion about what
it means for two events to coincide: if two events appear to occur at the same place
and time to one observer, then they will appear to occur at the same place and time
to any observer. (It is standard practice in relativity jargon to use the word “event”
to denote a point in spacetime— i.e., an ideal event occurs at a single point in space
and at a single instant of time.) In addition, we have no need to change the definition
of velocity, ~v = d~x/dt, or the resulting equation ∆~x = ~v∆t, which holds when ~v is a
constant. Furthermore, in contrast to the 19th century viewpoint, we now believe that
the fundamental laws of physics have the same form in any inertial reference frame. While
measurements of space and time depend on the observer, the fundamental laws of physics
are universal.

SUMMARY OF SPECIAL RELATIVITY:

We will not discuss the derivation of special relativity here, but the key consequences
of special relativity for kinematics — i.e., for measurements of time and distance — can be
summarized in three statements. Only the first of these — time dilation — will be needed
for the Doppler shift calculation, but I include all three effects for completeness. All three
statements use the word “appear,” the precise meaning of which will be described later.

(1) TIME DILATION: Any clock which is moving at speed v relative to a given
reference frame will “appear” (to an observer using that reference frame) to
run slower than normal by a factor denoted by the Greek letter γ (gamma),
and given by

γ ≡ 1√
1− β2

, β ≡ v/c . (1.10)
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(2) LORENTZ-FITZGERALD CONTRACTION: Any rod which is moving at
a speed v along its length relative to a given reference frame will “appear”
(to an observer using that reference frame) to be shorter than its normal
length by the same factor γ. A rod which is moving perpendicular to its
length does not undergo a change in apparent length.

(3) RELATIVITY OF SIMULTANEITY: Suppose a rod which has rest length
`0 is equipped with a clock at each end. The clocks can be synchronized in
the rest frame of the system by using light pulses. (That is, a light pulse
can be sent out from the center, and the clocks at both ends can be started
when they receive the pulses.) If the system moves at speed v along its
length, then the trailing clock will “appear” to read a time which is later
than the leading clock by an amount β`0/c. If, on the other hand, the
system moves perpendicular to its length, then the synchronization of the
clocks is not disturbed.

As mentioned above, the word “appear” in these statements has a special meaning.
In plain English, the word “appear” normally refers to the perception of the human eyes.
However, in these situations the perception of the human eyes would be very complicated.
The complication is that one sees with light, and the speed of light is not infinite. Thus,
when you look at an object, the light which you see coming from the parts of the object
that are near you has left the object more recently than the light which you see coming
from parts of the object that are further. Thus, you are seeing different parts of the object
as they were at different times in the past. If the object is static, this makes no difference,
but if it is moving, these effects can lead to complicated distortions. These distortions
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are not taken into account in the statements above. For purposes of interpreting these
statements, one can imagine that each reference frame is covered by an infinite number
of local observers, each of which observes only events so close that the time delay for
light travel is negligible. Each local observer is at rest in the frame, and carries a clock
that has been synchronized with the others by light pulses, taking into account the finite
speed of light. The “appearance” is then the description that is assembled after the fact
by combining the reports of these local observers.

The previous paragraph may sound more complicated then it is, so let’s consider
a simple example. Suppose that a straight rod is moving along the x-axis of a given
reference frame. Suppose further that the positions of the two endpoints of the rod are
measured by local observers, as a function of the reference frame time t, and found to
be x1(t) and x2(t). We would then say that the length of the rod at time t “appears” in
this reference frame to be

`(t) ≡ x2(t)− x1(t). (1.11)

If `(t) has some fixed value ` independent of t, then we would say that the rod “appears”
to have a fixed length `. We say that the rod “appears” to have this length even though
most observers would not actually see this length. For most observers the two ends of
the rod would not be equidistant, so the observer would see the location of the two ends
at different times.

To complete the summary, we must state that these rules hold only for inertial
reference frames — they do not hold for rotating or accelerating reference frames. Any
reference frame which moves at a uniform velocity relative to an inertial reference frame
is also an inertial reference frame.

THE RELATIVISTIC DOPPLER SHIFT:

We can now apply these ideas to the Doppler shift for light. We will first consider
the case in which the source is moving relative to our reference frame, with the observer
stationary. We will then consider the opposite possibility. The derivations will look very
different in these two cases, but the principle of relativity guarantees us that the results
must be the same — we are simply describing the same situation from the point of view
of two different reference frames.

For the case of the moving source, we can refer back to the nonrelativistic deriva-
tion. We describe everything from the point of view of the reference frame shown in the
diagrams, in which the observer is at rest. We will refer to this as “our” reference frame.
The sequence of events is the same as in the nonrelativistic case, except for step (2). The
source is a device that emits wave crests at fixed intervals in time, and hence it is a kind
of clock. Since it is moving relative to our frame, it will appear to us to be running slowly,
by a factor of γ. But ∆tS still refers to the time as measured on this clock, so the time
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interval between steps (1) and (2), as measured in our reference frame, is γ∆tS . Thus,
step (2) would read:

(2) At a time γ∆tS later, as measured on our clocks, the source emits a second
wave crest. During this time interval the source has moved a distance
∆` = γv∆tS further away from the observer.

If the two crests traveled the same distance, the time between their reception would
be the same as the time between their emission, which in our reference frame is γ∆tS .
Taking into account the extra distance ∆` = γv∆tS traveled by the second crest, and
setting the wave speed u equal to the speed of light c, the time between the reception of
the two crests is

∆tO = γ∆tS +
∆`

c
= γ∆tS +

γv∆tS
c

= γ
(

1 +
v

c

)
∆tS =

√
1 + β

1− β
∆tS .

(1.12)

Now consider the case in which the observer is moving, with the source stationary.
To describe this case we choose the reference frame of the diagrams (1′), etc., in which
the source is at rest. We let ∆t′ denote the time interval between the reception of the
first and second crest, as measured in our frame. The distance that the observer travels
between the receipt of the two crests is then given by ∆` = v∆t′. Following the same
strategy as in the nonrelativistic case, we can write ∆t′ as the sum of the time between
emissions plus the extra time needed for the second crest to travel the extra distances.
Thus,

∆t′ = ∆tS +
v∆t′

c
, (1.13)

which can be solved to give

∆t′ =
(

1− v

c

)−1
∆tS . (1.14)

But now we must take into account the fact that the clock used by the observer is moving
relative to our frame, so it will be running slowly compared to our clocks. Thus, the time
∆tO measured on the observer’s clock is given by

∆tO =
∆t′

γ
. (1.15)

Combining Eqs. (1.14) and (1.15), we find

∆tO =
1

γ

(
1− v

c

)−1
∆tS =

√
1 + β

1− β
∆tS . (1.16)
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As expected, the two answers agree. Eqs. (1.12) or (1.16) describe the relationship in
special relativity between the Doppler shift and the velocity of recession. Here v denotes
the relative speed between source and observer (assumed to lie on the line which joins
the source and observer), and it is impossible to know which of the two is actually in
motion. The quantity z is given by

z =

√
1 + β

1− β
− 1 (relativistic). (1.17)

Now that we have the answer, I mention an important warning. While it is worth-
while for us to understand the special-relativistic Doppler shift, it is not the final picture
for cosmology. The cosmological redshift involves also gravity, so it is properly described
only in the context of general relativity. The good news, however, is that we will learn
enough general relativity in this course to have a full understanding of the cosmological
redshift.

ACCELERATING CLOCKS:

I’ll close with a short discussion of accelerating clocks. Accelerating clocks are seldom
relevant to cosmology, but they often show up in elementary problems in special relativity.
There is a widespread rumor that special relativity describes clocks moving at a constant
velocity relative to an inertial frame, while general relativity is needed to properly describe
an accelerating clock. If you are a victim of this rumor, now is the time track down
whoever told it to you and straighten him/her out.

We have learned that special relativity predicts that a moving clock runs slower by
a factor of γ = 1/

√
1− β2, but what should we say about an accelerating clock? After

seeing the wondrous implications of special relativity for the behavior of moving clocks, it
is tempting to think that general relativity might give us equally powerful insights about
the effects of acceleration. A little common sense, however, is all that is needed to dispel
this temptation. Consider, for example, a concrete experiment involving the effects of
acceleration on a clock. To make the point, let us consider two clocks in particular. The
first is a digital wristwatch — for definiteness, let’s make it a data-bank-calculator-alarm-
chronograph. For a second clock, let’s think about an old-fashioned hourglass. To test
the effects of acceleration on these two clocks, we can imagine holding each clock two
feet above a concrete floor and then dropping it. (Is there anyone out there who still
thinks that general relativity is important to understand the results of this experiment?)
I’ll admit I haven’t actually tried this experiment, but I would guess that the hourglass
would smash to smithereens, but that the data-bank-calculator-alarm-chronograph would
probably survive the two foot drop.
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In case you haven’t gotten the drift, the conclusion is that the effects of acceleration
on a clock are complicated, and strongly dependent on the details of the clock mechanism.
In principle we can know the full equations of motion in our (inertial) reference frame, and
these equations can be solved to describe the evolution of both the hourglass clock and
the data-bank-calculator-alarm-chronograph as they hit the floor. While nature obeys a
symmetry — Lorentz invariance — which determines the effect of uniform motion on a
clock, there is no symmetry that determines the effect of acceleration.

It is possible to define an ideal clock, which runs at a rate that is unaffected by
acceleration. That is, one can define an ideal clock as one that runs at the same rate
as a nonaccelerating clock that is instantaneously moving at the same velocity. A truly
ideal clock is impossible to construct, but there is nothing in principle that prevents one
from coming arbitrarily close. Since acceleration (unlike uniform velocity) is detectable,
it is always possible in principle to design a device to compensate for any effects that
acceleration might otherwise produce. In any problem on a homework assignment or quiz
in 8.286, you should assume that any accelerating clock is an ideal one.
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THE KINEMATICS OF A HOMOGENEOUSLY

EXPANDING UNIVERSE

INTRODUCTION:

Observational cosmology is of course a rich and complicated subject. It is described
to some degree in Barbara Ryden’s Introduction to Cosmology and in Steven Wein-
berg’s The First Three Minutes, and I will not enlarge on that discussion here. I will
instead concentrate on the basic results of observational cosmology, and on how we can
build a simple mathematical model that incorporates these results. The key properties
of the universe, which we will use to build a mathematical model, are the following:

(1) ISOTROPY

Isotropy means the same in all directions. The nearby region, however, is rather
anisotropic (i.e., looks different in different directions), since it is dominated by the center
of the Virgo supercluster of galaxies, of which our galaxy, the Milky Way, is a part. The
center of this supercluster is in the Virgo cluster, approximately 55 million light-years
from Earth. However, on scales of several hundred million light-years or more, galaxy
counts which were begun by Edwin Hubble in the 1930’s show that the density of galaxies
is very nearly the same in all directions.

The most striking evidence for the isotropy of the universe comes from the observa-
tion of the cosmic microwave background (CMB) radiation, which is interpreted as the
remnant heat from the big bang itself. Physicists have measured the temperature of the
cosmic background radiation in different directions, and have found it to be extremely
uniform. It is just slightly hotter in one direction than in the opposite direction, by about
one part in 1000. Even this small discrepancy, however, can be accounted for by assuming
that the solar system is moving through the cosmic background radiation, at a speed of
about 400 km/s (kilometers/second). Once the effect of this motion is subtracted out,
the resulting temperature pattern is uniform in all directions to an accuracy of a few
parts in 100,000. ∗ Thus, on the very large scales which are probed by the CMB, the
universe is incredibly isotropic, as shown in Fig. 2.1:

∗ P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 results, XIII: Cosmological
parameters,” Table 4, Column 6, arXiv:1502.01589. The Planck collaboration does not
quote a value for ∆T/T , the root-mean-square fractional variation of the CMB tempera-
ture, but it can be computed from their best-fit parameters, yielding ∆T/T = 4.14×10−5.

http://arxiv.org/abs/1502.01589
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Figure 2.1: The cosmic microwave background radiation as detected by
the Planck satellite, from the 2015 data release. After correcting for the
motion of the Earth, the temperature of the radiation is nearly uniform
across the entire sky, with average temperature Tcmb = 2.726 K. Tiny
deviations from the average temperature have been measured; they are so
small that they must be depicted in a color scheme that greatly exaggerates
the differences, to make them visible. As shown here, blue spots are slightly
colder than Tcmb while red spots are slightly warmer than Tcmb, across a
range of ∆T/Tcmb ∼ 10−4 or 10−5.

As an analogy, we can imagine a marble, say about 1 cm across, which is round
to an accuracy of four parts in 100,000. That would make its radius constant to an
accuracy of 2 × 10−7 m = 200 nm. For comparison, the wavelength of my green laser
pointer is 532 nm, so the required accuracy is less than half the wavelength of visible
light. Modern technology can certainly produce surfaces with that degree of accuracy,
but it corresponds to a good quality photographic lens. In short, it is not easy to achieve
spherical symmetry to an accuracy of a few parts in 100,000!

Note that the spherical symmetry stands as strong evidence against the popular
misconception of the big bang as a localized explosion which occurred at some particular
center. If that were the case, then we would expect the radiation to be hotter in the
direction of the center. Thus, the big bang seems to have occurred everywhere. (A
localized explosion could look isotropic if we happened to be living at the center, but
since the time of Copernicus scientists have viewed with suspicion any assumption that
we are at the center of the universe.)

(2) HOMOGENEITY

Homogeneity means the same at all locations. On scales of a few hundred million
light-years and larger, the universe is believed to be homogeneous. The observational
evidence for homogeneity, however, is not nearly as precise as the evidence for isotropy
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seen in the CMB. Our belief that the universe is homogeneous, in fact, is motivated
significantly by our knowledge of its isotropy. It is conceivable that the universe appears
isotropic because all the galaxies are arranged in concentric spheres about us, but such
a picture would be at odds with the Copernican paradigm that has been central to our
picture of the universe for centuries. So we assume instead that the universe is nearly
homogeneous on large scales. That is, we assume that if one observes only large-scale
structure, then the universe would look very much the same from any point.

The relationship between the two properties of homogeneity and isotropy is a little
subtle. Note that a universe could conceivably be homogeneous without being isotropic
— for example, the cosmic background radiation could be hotter in a certain direction, as
seen from any point in space, or perhaps the angular momentum vectors of all the galaxies
could have a prefered direction. Similarly, a universe could conceivably be isotropic (to
one observer) without being homogeneous, if all the matter were arranged on spherical
shells centered on the observer. However, if the universe is to be isotropic to all observers,
then it must also be homogeneous.

The hypothesis of homogeneity can be tested to some degree of accuracy by galaxy
counts. One can estimate the number of galaxies per volume as a function of radial
distance from us, and one finds that it appears roughly independent of distance. This
kind of analysis is hampered, however, by the difficulty in estimating distances. At large
distances it is also hampered by evolution effects — as one looks out in space one is also
looking back in time, and the brightness of a galaxy presumably varies with its age. Since
we can only see galaxies down to some threshold brightness, the number that we see can
depend on how their brightness evolves.

(3) HUBBLE’S LAW

Hubble’s law, enunciated theoretically by Georges Lemâıtre in 1927 and first demon-
strated observationally by Edwin Hubble in 1929, states that all the distant galaxies are
receding from us, with a recession velocity given by

v = Hr . (2.1)

Here

v ≡ recession velocity ,

H ≡ Hubble expansion rate ,

and

r ≡ distance to galaxy .
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For the real universe Hubble’s law is a good approximation, and Hubble’s law will be an
exact property of the mathematical model that we will construct.

The Hubble expansion rate H is often called “the Hubble constant” by astronomers,
but it is constant only in the sense that its value changes very little over the lifetime of
an astronomer. Over the lifetime of the universe, H varies considerably. The present
value of the Hubble expansion rate is denoted by H0, following a standard convention in
cosmology: the present value of any time-dependent quantity is indicated by a subscript
“0”. Some authors, including Barbara Ryden, reserve the phrase “Hubble constant” for
H0, and refer to the time-dependent H(t) as the “Hubble parameter.” To me this is not
much of an improvement, since in physics the word “parameter” is most often used to
refer to a constant. I will call it the Hubble expansion rate, a terminology that is used
by some other sources, including the Particle Data Group∗.

For decades, the numerical value of H0 proved difficult to determine, because of the
difficulty in measuring distances. During the 1960s, 70s, and 80s, the Hubble expansion
rate was merely known to lie somewhere in the range of

H0 =
0.5− 1.0

1010 years
. (2.2)

Note that H0 has the units of 1/time, so that when
it is multiplied by a distance it produces a velocity.
However, since we rarely in practice talk about veloci-
ties in units of such and such a distance per year, H0

is often quoted in a mixed set of units — for exam-
ple, 1/(1010 yr) corresponds to about 30 km/s per mil-
lion light-years. Astronomers usually quote distances
in parsecs rather than light-years, where one parsec
is the distance which corresponds to a parallax of 1
second of arc between the Earth and the Sun, when
they are separated by their nominal average distance
of 1 au (astronomical unit, 149.597870700 × 109 m),

Figure 2.2

as illustrated at the right. One parsec (abbreviated pc) corresponds to 3.2616 light-years.†
Astronomers usually quote the value of the Hubble expansion rate in units of km/s per

∗ Astrophysical Constants and Parameters, the Particle Data Group,
http://pdg.lbl.gov/2015/reviews/rpp2015-rev-astrophysical-constants.pdf
† One drawback in using light-years is that the definition is tied to that of a year, and

the International (SI) System of Units does not specify the definition of a year. This is
a significant ambiguity, because the tropical year (vernal equinox to vernal equinox) and
the sidereal year (full revolution about the Sun, relative to the fixed stars) differ by a

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-astrophysical-constants.pdf
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megaparsec, where 1 megaparsec (Mpc) is a million parsecs. The value of 1/(1010 yr)
is equivalent to 97.8 km-s−1-Mpc−1, so the range of Eq. (2.2) corresponds roughly to a
Hubble expansion rate between 50 and 100 km-s−1-Mpc−1. For convenience, astronomers
also define the dimensionless quantity h0 by

H0 ≡ h0 × (100 km-s−1-Mpc−1) . (2.3)

The range of Eq. (2.2) translates into a value of h0 between 1
2 and 1.

While the actual value of the Hubble expansion rate certainly changes very little over
the lifetime of an astronomer, the same cannot be said for its measured value. Recent
precision measurements of the faint anisotropies in the cosmic microwave background
radiation, using instruments on the Planck satellite, enabled cosmologists to determine∗

H0 = 67.66± 0.42 km-s−1-Mpc−1 , (2.4)

which corresponds to a time-scale H−10 = 14.4 ± 0.1 billion years.† The uncertainty of
±0.42 km-s−1-Mpc−1 in Eq. (2.4), and all uncertainties in H0 in the following discussion,
are given as “1 σ” (one standard deviation) errors. Statistically one expects the correct
value to lie inside the uncertainty range 68% of the time, and outside it 32% of the time.

When Hubble first measured the expansion rate, however, he found a value much
larger than the value in Eq. (2.4). Due to a very bad estimate of the distance scale,
he found H0 ∼ 500 km-s−1-Mpc−1, corresponding to H−10 ∼ 2 billion years. Hubble’s

original published graph is reproduced here as Fig. 2.3‡:

fractional amount of about 4× 10−5. Both drift slowly with time due to changes in the
Earth’s orbit, and neither agrees with other conventions, such as the Julian or Gregorian
years. The International Astronomical Union (IAU), however, does specify the meaning
of a year, defining it as a Julian year, exactly 365.25 days (http://www.iau.org/science/
publications/proceedings_rules/units/). The day is 24× 60× 60 seconds, and the second
is defined by atomic standards.
∗ N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological

parameters,” Table 2, Column 6, arXiv:1807.06209.
† It may not be obvious why measurements of the anisotropies in the CMB should

be related in any way to H0, but cosmologists have developed a detailed theory of how
these anisotropies were generated and how they have evolved, which we will pursue later
in the course when we discuss inflation. By fitting the predictions of this theory with the
observed anisotropies, it is possible to determine the values of a wide range of cosmological
parameters, including H0.
‡ Edwin Hubble, “A Relation Between Distance and Radial Velocity Among Extra-

galactic Nebulae,” Proceedings of the National Academy of Science, vol. 15, pp. 168-173
(1929), http://www.pnas.org/gca?gca=pnas;15/3/168.

http://www.iau.org/science/publications/proceedings_rules/units/
http://www.iau.org/science/publications/proceedings_rules/units/
https://arxiv.org/abs/1807.06209
http://www.pnas.org/gca?gca=pnas;15/3/168
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Figure 2.3: Edwin Hubble’s original data, published in 1929, which intro-
duced the first observational evidence for Hubble’s law and the expansion
of the universe.

The horizontal axis in Fig. 2.3 shows the estimated distance to the galaxies, and the

vertical axis shows the recession velocity, corrected for the motion of the Sun, in kilometers

per second (although it is labeled “km”). Each black dot represents a galaxy, and the

solid line shows the best fit to these points. Each open circle represents a group of these

galaxies, selected by their proximity in direction and distance; the broken line is the

best fit to these points. The cross shows a statistical analysis of 22 galaxies for which

individual distance measurements were not available. The evidence for a straight line is

not completely convincing, but we must keep in mind that this was only the first paper

on the subject. All the galaxies in Hubble’s original sample were in fact quite close, so

the local velocity perturbations were comparable to the Hubble velocities. Note that

1000 km/s, at the top of Hubble’s graph, corresponds to z ≈ 0.03, while modern tests of

Hubble’s law extend out to values of z of order 1. Hubble estimated the velocity of the

Sun, relative to the mean motion of the galaxies in the sample, to be about 280 km/s, so

the solar motion was a significant correction to the data.

After Hubble’s original paper, the evidence for the linearity of Hubble’s law improved

very quickly. In 1931, Hubble and Humason published data that extended to much larger

redshift:
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Figure 2.4: Data published by Edwin Hubble and Milton Humason in
1931*, extending Hubble’s original measurements to significantly greater
distances.

The data from the first paper are shown as dots in the lower left corner, all with velocities
less than 1000 km/s. The new value for H0 was 560 km-s−1-Mpc−1.

As we will see later, a value of the Hubble expansion rate as large as 500 or 560
km-s−1-Mpc−1 would imply a very small age for the universe, and the inconsistency of
this age with other estimates was a serious problem for big bang theorists for much of
the 20th century. It was not until 1958 that the measured value came within the range of
Eq. (2.2), primarily due to the work of Walter Baade and Allan Sandage. Summaries of

these early measurements may be found in Kragh†, Tamman and Reindl‡, and Kirshner¶.

* Edwin Hubble and Milton L. Humason, “The velocity-distance relation among
extra-galactic nebulae,” Astrophysical Journal, vol. 74, pp. 43–80 (1931), http://
adsabs.harvard.edu/abs/1931ApJ....74...43H.
† Helge Kragh, Cosmology and Controversy: The Historical Development of Two The-

ories of the Universe (Princeton: Princeton University Press, 1996).
‡ G. A. Tammann and B. Reindl, in the proceedings of the XXXVIIth Moriond Astro-

physics Meeting, The Cosmological Model, Les Arcs, France, March 16-23, 2002. Avail-
able at http://arXiv.org/abs/astro-ph/0208176.
¶ R. P. Kirshner, “Hubble’s diagram and cosmic expansion,“ Proceedings of

the National Academy of Sciences USA, vol. 101, no. 1, pp. 8-13 (2004),
http://www.pnas.org/content/101/1/8.

http://adsabs.harvard.edu/abs/1931ApJ....74...43H
http://adsabs.harvard.edu/abs/1931ApJ....74...43H
http://arXiv.org/abs/astro-ph/0208176
http://www.pnas.org/content/101/1/8
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Figure 2.5: An extension of the Hubble diagram, showing observations
up to 2002 of Type 1a supernovae. Error bars correspond to uncertainties
in determining distances to each object. The small red box near the origin
indicates the range covered in Hubble’s original plot.

The situation improved dramatically during the 1990s, largely due to the ability of
the Hubble Space Telescope to resolve Cepheid variable stars in a number of galaxies
besides our own. Cepheids are variable stars, pulsing in a regular pattern, typically over
a period of days. The period of the pulsations is a very good indicator of the star’s
intrinsic brightness — the brighter the star, the longer its period. By comparing the
intrinsic brightness and the observed brightness of these stars, astronomers can estimate
the distance, making Cepheids an invaluable tool for studying the relationship between
distance and redshift. In addition to the Cepheids, supernovae of a type called 1a also
began to play a major role in measurements of the Hubble constant. Type 1a super-
novae explode once and then fade from view, unlike the periodic cycles of Cepheid stars.
Nonetheless, the so-called “light-curves” from these supernovae — the way their bright-
ness rises sharply to a peak and then falls over characteristic time-scales — can likewise
be related quantitatively to their intrinsic brightness. Fig. 2.5 shows a more modern
Hubble diagram, displaying measurements of Type 1a supernovae, all measured before
2002.

In 2001 the Hubble Key Project Team announced its final result,∗ H0 = 72± 8 km-
s−1-Mpc−1, a considerable improvement over the large uncertainty expressed in Eq. (2.2).

∗ W. L. Freedman et al., “Final results from the Hubble Space Telescope Key Project
to measure the Hubble Constant,” Astrophysical Journal, vol. 553, pp. 47–72 (2001),
http://arXiv.org/abs/astro-ph/0012376.

http://arXiv.org/abs/astro-ph/0012376
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The Tammann and Sandage group∗ still advocated a slightly lower value, H0 = 60 km-
s−1-Mpc−1, “with a systematic error of probably less than 10%,” but the difference
between this number and the Hubble Key Project number is rather small.

Soon after that, astronomers reported new measurements of H0 based on a com-
plementary method. In February 2003 astronomers using the Wilkinson Microwave
Anisotropy Probe (WMAP), a satellite dedicated to measuring the faint anisotropies

in the cosmic background radiation, released an analysis of their first year of data.† By
combining their data with several other experiments, they found the most precise value
of H0 that had yet been announced: 71± 4 km-s−1-Mpc−1. Since 2003 a number of new

measurements have been announced, including WMAP measurements with 5 years,‡ 7

years,¶ and then 9 years§ of data, as well an estimate based on the higher resolution
data from the Planck satellite, with data releases in 2013,♣ 2015,♦ and 2018.♥

Estimates based on CMB measurements, especially the most recent Planck re-
sults, have found values for H0 a little lower than estimates based on more astronom-
ical methods, such as the 2018 measurement by Riess et al.♠, who used Cepheid vari-
ables and supernovae of type Ia to recalibrate the cosmic distance scale, finding a value
H0 = 73.52 ± 1.62 km-s−1-Mpc−1. The discrepancy between this value and the Planck

∗ G. A. Tammann, B. Reindl, F. Thim, A. Saha, and A. Sandage, in A New Era in
Cosmology (Astronomical Society of the Pacific Conference Proceedings, Vol. 283), eds.
T. Shanks and N. Metcalfe, http://arXiv.org/abs/astro-ph/0112489.
† D. N. Spergel et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP)

observations: Determination of cosmological parameters,” Astrophysical Journal Supple-
ment, vol. 148, pp. 175–194 (2003), http://arXiv.org/abs/astro-ph/0302209.
‡ E. Komatsu et al., “Five-year Wilkinson Microwave Anisotropy Probe observations:

cosmological interpretation,” Astrophysical Journal Supplement, vol. 180, pp. 330-376
(2009), Table 1, Column 6, http://arXiv.org/abs/arXiv:0803.0547.
¶ E. Komatsu et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP)

observations: Cosmological interpretation,” Astrophysical Journal Supplement, vol. 192,
article 18 (2011), Table 1, Column 6, http://arXiv.org/abs/1001.4538.
§ G. Hinshaw et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological parameter results,” http://arXiv.org/abs/1212.5226, Table
3, Column 5.
♣ Planck Collaboration: P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological

parameters,” Table 2, Column 7, http://arXiv.org/abs/1303.5076.
♦ Planck 2015 results, XIII, op. cit.
♥ Planck 2018 results, VI, op. cit.
♠ A. G. Riess et al. (SH0ES Collaboration), “Milky Way Cepheid Standards for Mea-

suring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble
Constant,” Astrophys. J. 861, 126 (2018), arXiv:1804.10655 [astro-ph.CO].

http://arXiv.org/abs/astro-ph/0112489
http://arXiv.org/abs/astro-ph/0302209
http://arXiv.org/abs/arXiv:0803.0547
http://arXiv.org/abs/1001.4538
http://arXiv.org/abs/1212.5226
http://arXiv.org/abs/1303.5076
https://arxiv.org/abs/1804.10655
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value of Eq. (2.4) is at the level of 3.5 σ, which means that if there are no systematic
errors that are being overlooked, the probability that the two results should differ by this
much is only about 1 in 2000. The discrepancy might nonetheless be a statistical fluke,
or it could be due to some unknown systematic error. If neither of these is the case, it
would seem to indicate that the contents of the universe include some new ingredient
that is currently unknown.

These and a number of other measurements of the Hubble constant are listed in
Table 2.1.¶

THE HOMOGENEOUSLY EXPANDING UNIVERSE:

Given the statements about isotropy, homogeneity, and Hubble’s law described
above, our task now is to build a mathematical model that incorporates these ideas.

In the real universe, of course, the properties of isotropy, homogeneity, and Hubble’s
law hold only approximately, and only if the complicated structure that exists on length
scales less than a few hundred million light-years is ignored. For a first approximation,
however, it is useful to construct a mathematical model describing an idealized universe
in which these properties hold exactly.

¶ References that have not already been given are Georges Lemâıtre, “Un Univers
homogène de masse constante et de rayon croissant, rendant compte de la vitesse ra-
diale des nébuleuses extra-galactiques,” Annales de la Société Scientifique de Bruxelles,
vol. A47, pp. 49-59 (1927) [Translated into English as “A homogeneous universe of con-
stant mass and increasing radius accounting for the radial velocity of extra-galactic neb-
ulae,” Monthly Notices of the Royal Astronomical Society, vol. 91, pp. 483-490 (1931)];
W. Baade, I.A.U. Trans. VIII (Cambridge Univ. Press), p. 397 (quoted by Tammann
and Reindl (2002), op. cit.); A. Sandage, “Current problems in the extragalactic distance
scale,” Astrophysical Journal, vol. 127, pp. 513–526 (1958), http://adsabs.harvard.edu/
abs/1958ApJ...127..513S; G. de Vaucouleurs and G. Bollinger, “The extragalactic dis-
tance scale. VII - The velocity-distance relations in different directions and the Hub-
ble ratio within and without the local supercluster,” Astrophysical Journal, Part 1,
vol. 233, pp. 433-452, http://adsabs.harvard.edu/abs/1979ApJ...233..433D; A. G. Riess,
W. H. Press, and R. P. Kirshner, “A precise distance indicator: Type 1a supernova
multicolor light-curve shapes,” Astrophysical Journal, vol. 473, pp. 88-109 (1996),
http://arxiv.org/abs/astro-ph/9604143; A. G Riess et al., “A 3% solution: Determina-
tion of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3,”
Astrophysical Journal, vol. 730, 119 (2011), http://arXiv.org/abs/1103.2976.; A. G. Riess
et al. (SH0ES Collaboration), “A 2.4% Determination of the Local Value of the Hubble
Constant,” http://arxiv.org/abs/1604.01424 [astro-ph.CO]; J. N. Grieb et al. (BOSS
Collaboration), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final
sample,” Mon. Not. Roy. Astron. Soc. 467, 2085-2112 (2017); S. Birrer et al. (H0LiCOW
collaboration), “H0LiCOW-IX: Cosmographic analysis of the doubly imaged quasar SDSS
1206+4332 and a new measurement of the Hubble constant,” arXiv:1809.01274 [astro-
ph.CO].

http://adsabs.harvard.edu/abs/1958ApJ...127..513S
http://adsabs.harvard.edu/abs/1958ApJ...127..513S
http://adsabs.harvard.edu/abs/1979ApJ...233..433D
http://arxiv.org/abs/astro-ph/9604143
http://arXiv.org/abs/1103.2976.
http://arxiv.org/abs/1604.01424
https://arxiv.org/abs/1809.01274
https://arxiv.org/abs/1809.01274
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Measurements of the Hubble Constant H0

Author Date Value (km-s−1-Mpc−1)

Lemâıtre 1927 575 – 625

Hubble 1929 500

Hubble & Humason 1931 560

Baade 1952 250

Sandage 1958
75, with a possible uncertainty

of a factor of 2

de Vaucouleurs & Bollinger 1979 100± 10

Riess et al. (SN 1a & cepheids) 1996 65± 6

Hubble Key Project 2001 72± 8

Tammann, Sandage, et al. 2001 60± probably less than 10%

WMAP 1-year (with other data) 2003 71± 4

WMAP 5-year (with other data) 2008 70.5± 1.3

WMAP 7-year (with other data) 2011 70.2± 1.4

Riess et al. (SN 1a & cepheids) 2011 73.8± 2.4

WMAP 9-year (with other data) 2012 69.3± 0.8

Planck 2013 (with other data) 2013 67.3± 1.2

Planck 2015 (with other data) 2015 67.7± 0.5

Riess et al. (SH0ES collaboration, SN Ia & cepheids) 2016 73.2± 1.7

Grieb et al. (BOSS collaboration) 2016 67.6± 0.7

Riess et al. (SH0ES collaboration, SN Ia & cepheids) 2018 73.5± 1.6

Planck 2018 (with other data) 2018 67.7± 0.4

Birrer et al. (H0LiCOW collaboration,
gravitationally lensed quasars)

2018 72.5± 2.2

Table 2.1

At first thought, one might think that the concept of homogeneity is inconsistent
with Hubble’s law — if the universe is expanding, there must be a unique point which
is at rest. This argument would be valid if there were some physical way of telling if
an object is at rest. However, the basic principle of the theory of relativity asserts that
all inertial reference frames are equivalent, and that any reference frame traveling at a
uniform velocity with respect to an inertial reference frame is also an inertial reference
frame. For example, if a train moves at a constant speed in a fixed direction, then
observers on the train would observe exactly the same laws of physics as observers on the
ground. The viewpoint of observers on the train, for whom the ground is moving and the
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table in the dining car is at rest, is just as “real” as the viewpoint of observers on the
ground. Thus, there is no meaning to being absolutely at rest. While special relativity
dates from 1905, the basic principle that all inertial frames are equivalent was emphasized
by Galileo as early as 1632 in his Dialogue Concerning the Two Chief World Systems.
The concept was crucial to Galileo’s view of the solar system, because it explained why we
do not feel the huge velocities (∼30,000 m/s ≈ 65,000 mph) associated with the rotation
of the Earth and its motion around the Sun. (The principle that all inertial frames are
equivalent was temporarily abandoned, however, in the 19th century, when the ether was
introduced in the description of electromagnetism.)

To see how Hubble’s law is consistent with homogeneity, it is easiest to begin with a
one dimensional example. To this end, we will borrow a diagram from Steven Weinberg’s
book, The First Three Minutes, shown in Fig. 2.6

Figure 2.6: Hubble’s Law is compatible with homogeneity in space. Each
observer can consider herself at rest, and will observe other points moving
away from her at speeds proportional to their distance from her.

This diagram shows a row of evenly spaced points. In the top part, the point A is
shown in the center, with points B and C to the right, and Z and Y to the left. The
picture is drawn from the point of view of an observer at A, so A is at rest in this reference
frame. The observer at A sees a pattern of motion dictated by Hubble’s law, which means
that B and Z are each receding at some speed v, and C and Y are each receding at 2v.
(For now let us assume that v � c, so we need not worry yet about any of the peculiar
effects associated with special relativity.) In this picture it looks as if A is special because
it alone is at rest, and the picture is therefore not homogeneous. However, the lower
portion the picture is shown from the point of view of an observer at B. The picture is
shown in the rest frame of B, and so of course B is at rest. Each velocity in this picture
is obtained from the velocity in the picture above by adding a velocity v to the left. One
can see that an observer at B can also regard himself as the center of the motion, and he
also sees a pattern of motion consistent with Hubble’s law.

It is significantly harder to visualize this picture in three dimensions, so it is useful
to introduce some mathematical machinery. The concept of a homogeneously expanding
universe can be described most simply by using the analogy of a roadmap. A roadmap
is of course much smaller than the area that it describes, but the distances are related
by the scaling that is usually indicated in one of the corners of the map. It might read,
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for example, “1 inch = 7 miles.” If some sorcerer somehow caused the entire region to
uniformly double in size, we would be shocked, but we would not have to throw away
the map. Instead we could just cross out the statement “1 inch = 7 miles” and replace
it with “1 inch = 14 miles.”

While it is not likely that we will meet such a sorcerer, the universe is to a good
approximation expanding uniformly, and we can use the same map trick to describe it.
Even though the universe is expanding, we can represent it by a map that does not
change with time. The universe is three-dimensional, so the map takes the form of a
three-dimensional coordinate system, with coordinates x, y, and z. The coordinate axes
can be marked off in arbitrary units, which I will call “notches.” We could measure the
map in ordinary distance units, like centimeters, and in fact most cosmology textbooks
do that. But by inventing a new unit, we can emphasize that distances on the map have
no fixed relation to the physical distances between the actual objects that are pictured
on the map. By using notches, we give ourselves an extra dimensional check on our
calculations. If we keep track of our units and the answer is given in notches, then we
will know that we calculated a map distance, and not the physical distance between real
objects.

As time progresses, the expansion of the universe can be described by changing the
relation between physical distances and the notch. At one time a notch might correspond
to a million light-years, and at a later time it might correspond to one and a half million
light-years. A coordinate system that expands with the universe in this way is called a
comoving coordinate system. The expansion of a part of the universe, with the comoving
coordinate system shown, could be depicted as in Fig. 2.7:

=⇒ =⇒

Figure 2.7: By employing “comoving coordinates,“ a single map can rep-
resent the locations of objects in an expanding universe. Distances between
objects on the map are measured in “notches,” while the relation between
notches and physical units (such as centimeters or light-years) changes over
time.
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Objects that are moving with the Hubble expansion are at rest in these coordinates,
and the motion is described entirely by the scale factor a(t), which gives the physical
distance that corresponds to one notch at any time t. The scale factor a(t) might be
measured, for example, in units such as m/notch. The physical distance between any two
points at any given time is then given by

`p(t) = a(t)`c . (2.5)

Here `c denotes the coordinate distance between the two objects (such as the galaxies
depicted in Fig. 2.7). It is measured in notches and is independent of time. `p denotes the
physical distance, which is measured in meters and increases with time as the universe
expands.

(Note that the diagrams in Fig. 2.7 show that the distances between galaxies are
growing uniformly, while the galaxies themselves are not expanding. Inside each galaxy
the gravitational pull of the mass concentration has caused the expansion to halt. For
now, however, we are interested only the properties of the universe that are seen when
averaging over large regions with many galaxies, so the details of what happens inside
these galaxies are not important.)

Since special relativity tells us that moving rulers contract in the direction of motion,
the concept of “physical distance” needs to be carefully defined. Should the distance
between us and a distant galaxy be measured with rulers at rest relative to us, or with
rulers at rest relative to the distant galaxy? Neither of these choices is good, since either
choice would require rulers on one end or the other that are moving at high speed relative
to the matter around them. The relativistic contraction would distort the distances, so
that the average separation between galaxies would appear to vary with the distance from
the observer.

To avoid this problem, cosmologists use the concept of “comoving” rulers — rulers
which move with the nearby matter. To define the physical distance between us and a
far-away galaxy, one imagines marking off a line between us and the galaxy with closely
spaced grid marks. The distance between each two grid marks is then measured with
a ruler that is at rest with respect to the matter in the region between the two grid
marks, and the distance between us and the galaxy is defined by adding the distances so
measured. This is how the quantity `p(t) in Eq. (2.5) is defined. Distance defined in this
way is called the proper distance. We will also refer to `p(t) as the physical distance, in
contrast with the (comoving) coordinate distance `c.

We are now in a position to see how the homogeneous expansion implied by Eq. (2.5)
leads directly to Hubble’s law. To see this, one simply differentiates Eq. (2.5) in order to
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find the velocity. If `p denotes the distance between a particular distant galaxy and us,
then the recession velocity of that galaxy is given by

v =
d`p
dt

=
da

dt
`c =

[
1

a(t)

da(t)

dt

]
a(t)`c . (2.6)

Note that this can be rewritten as

v =
d`p
dt

= H`p , (2.7)

where H(t) is given by

H(t) =
1

a(t)

da(t)

dt
. (2.8)

By comparing Eqs. (2.7) and (2.1), we see that the assumption of uniform expansion has
led immediately to Hubble’s law. Even better, in Eq. (2.8) we have derived an expression
for the Hubble expansion rate, H(t).

MOTION OF LIGHT RAYS:

To understand observations in a universe described by a comoving coordinate system,
we will need to be able to trace the path of light rays through it. The rule is very simple:
light travels in a straight line, with a speed that would be measured by each local observer,
as the light ray passes, at the standard value c = 299, 792, 458 m/s. The key point is
that the speed is fixed in the physical units, such as m/s, while the coordinate system is
marked off in notches. Thus, at any given time one must use the conversion factor a(t)
to convert from meters to notches, in order to find the speed of a light pulse in comoving
coordinates.

Consider, for simplicity, a light pulse moving along the x-axis. If the speed of light in
m/s is c, and the number of meters per notch is given by a(t), then the speed in notches
per second is given by c/a(t):

dx

dt
=

c

a(t)
. (2.9)

To check our units, we can use square brackets [A] to denote the units of some quantity
A. Then [

c

a(t)

]
=

m/s

m/notch
=

notch

s
, (2.10)

which gives the right units for dx/dt, since x is a coordinate measured in notches.
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Since we have not studied general relativity, the reader might well be leery that
the subtleties of spacetime might somehow lead to a flaw in this argument. Eq. (2.9),
however, is in fact rigorously correct in general relativity. It can be derived in the context
of hypothetical point particles that travel at the speed of light, as we argued here, or one
can incorporate Maxwell’s equations into general relativity, and then calculate the speed
of electromagnetic waves.

THE SYNCHRONIZATION OF CLOCKS:

One of the key ideas discussed earlier in the context of special relativity was the
notion that simultaneity is a frame-dependent concept — two clocks which appear syn-
chronized to one observer will appear to be unsynchronized to an observer in relative
motion. Thus, when we speak of a(t) as a single function which characterizes the entire
universe, we should ask ourselves how we will synchronize the clocks on which t will be
measured.

The answer turns out to be simple, although a little subtle. Imagine that we are
living in this idealized universe, so we can measure the expansion function a as a function
of our own clock time, using our own choice of a notch. Similarly, we can imagine another
civilization of creatures living in the galaxy M81, who measure a according to their own
clocks, with their choice of a notch. We will assume that communication is possible, but
time signals alone are not sufficient to synchronize clocks, since the signals travel with at
most the speed of light, and the distance from the Earth to M81 is time-dependent and
initially unknown. Thus, if we receive a signal from M81 saying that “this signal was
sent at t = 0,” we would have no way of knowing how much time had elapsed since the
signal was sent. So, is it possible for the M81 creatures and us to agree on a definition of
time and on the scale factor a(t)?

Common units for distance and time can in principle be established by using atomic
standards, in the same way as we do on Earth — time can be defined in terms of a
sharply defined atomic frequency, and distance can be defined in terms of how far light
can travel in a unit of time. But one must still ask how the clocks are to be synchronized.
One might think that one could synchronize the clocks by fixing the zero of time to be
the instant when the scale factor a reaches a certain value, but this plan is complicated
by the fact that it requires the creatures on M81 to understand not only what we mean
by meters and seconds, but also what we mean by notches. Since the physical distance
corresponding to a notch is time-dependent, we cannot communicate its definition until
we have found a way to synchronize clocks.

The idea then is to find some physically measurable quantity and use its time de-
pendence to synchronize clocks. One choice is the Hubble expansion rate H(t). In prin-
ciple, we and the M81 creatures could synchronize our clocks by setting them all to zero
when H(t) reaches some prescribed value. Alternatively, the temperature of the cosmic
microwave background radiation could be used, resulting in the same synchronization.
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(Note that the assumption of homogeneity implies that the relationship between H(t)
and the microwave background temperature T (t) must be the same at all points in the
universe.) Time defined in this way is called cosmic time, and it is this definition of time
that will be used for the rest of this course, unless otherwise specified.

Once we agree with the M81 creatures on how to synchronize our clocks, we can also
fix a definition of the notch by fixing its value in atomic units at the time of synchroniza-
tion. They and we can then independently measure the scale factor a(t) for all future
times. Will we get the same value? By the assumption of homogeneity, of course we will
— otherwise there would have to be some real distinction between the way the universe
appears to them and the way it appears to us.

If one is looking for subtle problems, one might ask what would happen in a universe
in which H(t) just happens to be a constant (independent of time), and in which there is
no microwave background radiation. A spacetime of this type was first studied in 1917
by the Dutch astronomer Willem de Sitter, and is called de Sitter space. The definition
of cosmic time given above does not make sense in de Sitter space, and it turns out
that there is no unique definition. Does this have any relevance to cosmology? Yes, as
we will see later when we discuss inflation. Although the de Sitter model is no longer
regarded as a viable description of the present universe, the model has become relevant in
a different context. The inflationary universe scenario, which we will be discussing later
in this course, is characterized by a phase in which the universe is accurately described
by a de Sitter space. Furthermore, it is likely that the present acceleration of the cosmic
expansion, discovered in 1998∗, could indicate the beginning of a de Sitter space era in
our future.

By using the time dependence of H(t) or T (t), we can define what it means to say
that two events happened at the same time t, even if they occurred billions of light-years
apart. In cosmology, in other words, we may single out a special class of observers:
those who are moving with the Hubble expansion, and hence are at rest with respect
to the matter in their own vicinity. Clocks carried by these special observers define the
measurement of cosmic time. The special observers in different regions are moving with
respect to each other, and thus the cosmic time system that they measure is not equal
to the time that would be measured in any one inertial reference frame.

To summarize: the time variable t that we are using is called cosmic time, and any
observer at rest relative to the galaxies in her vicinity can measure it on her own clock.
The clocks throughout the universe can be synchronized by using the Hubble expansion
rate H(t) or the temperature T (t) of the cosmic microwave background radiation.

∗ A. G. Riess et al., “Observational evidence from supernovae for an accelerating
universe and a cosmological constant,” Astronomical Journal, vol. 116, pp. 1009-10038
(1998), http://arxiv.org/abs/astro-ph/9805201; S. Perlmutter et al., “Measurements of
Omega and Lambda from 42 high redshift supernovae,“ Astrophysical Journal, vol. 516,
pp. 565-586 (1999), http://arxiv.org/abs/astro-ph/9812133.

http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
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THE COSMOLOGICAL REDSHIFT:

Suppose an atom on a distant galaxy is emitting light with wave crests separated
by a fixed time interval ∆tS (“S” for “source”). We will receive these wave crests at
a Doppler-shifted interval, which we will call ∆tO (“O” for “observer”). Our goal is to
relate the Doppler shift to the behavior of the scale factor a(t). We might think that
we could just use the special relativity formula for the Doppler shift that we derived in
Lecture Notes 1, but that would not properly take into account the motion of light rays
in an expanding universe, as described by Eq. (2.9). To take this into account, we start
the calculation from scratch.

Let us construct a coordinate system with ourselves at the origin, and let us align
the x-axis so that the galaxy in question lies on it, as in Fig. 2.8:

Figure 2.8: Diagram for discussing the transmission of a light signal from
a distant galaxy to us. We are at the origin, and the galaxy is along the
x-axis, at x = `c. The light signal travels to us along the x-axis.

Let tS be the cosmic time at which the first crest is emitted from the distant galaxy,
with the second crest emitted at tS + ∆tS . The atom is a kind of clock situated on the
distant galaxy, so the time interval measured by the atom agrees with the interval of
cosmic time. (Note that this is different from the relativistic Doppler shift calculation in
Lecture Notes 1, in which we explicitly took into account the slowing down of a clock on
a moving source. Here we are using a different kind of coordinate system, with a different
definition of the time coordinate. Each clock is at rest in the non-inertial comoving
coordinate system, and the cosmic time of the coordinate system is by definition the time
as read on such clocks.)

The next step is to understand the relationship between the time interval of emission
∆tS and the time interval of observation ∆tO. Note that after the first crest is emitted,
it travels a physical distance λS ≡ c∆tS before the second crest is emitted. If ∆tS is the
time between the emission of wave crests, then

λS ≡ c∆tS (2.11)

is the wavelength of the emitted wave. The two crests are then separated by a coordinate
distance

∆x = λS/a(tS) . (2.12)
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We assume that the period of the wave ∆tS is very short compared to the time scale on
which a(t) varies, so it does not matter whether the denominator is written as a(tS) or
a(tS + ∆tS). According to Eq. (2.9), the velocity of light in these coordinates depends
on t, but is independent of spatial position. Thus, at any given time the two crests will
travel at the same coordinate velocity dx/dt, and thus will stay the same coordinate
distance apart. When they arrive at the observer they will still be separated by the same
coordinate distance ∆x with which they started. The physical separation at the observer
will then be given by

λO = a(tO)∆x =
a(tO)

a(tS)
λS , (2.13)

and thus the wavelength is simply stretched with the expansion of the universe. The time
separation between the arrival of the crests will be

∆tO =
λO
c

=
a(tO)

a(tS)
∆tS . (2.14)

Finally, one has

1 + z ≡ ∆tO
∆tS

=
λO
λS

=
a(tO)

a(tS)
. (2.15)

Thus, the Doppler shift factor 1 + z is just the ratio of the scale factors at the times of
observation and emission. Equivalently, the wavelength of the light is stretched by the
expansion of the universe.

It is natural to ask how this calculation is related to the calculation of the relativistic
Doppler shift of Lecture Notes 1. Since this calculation did not involve any explicit
reference to time dilation, one might think that this calculation is nonrelativistic. If you
carefully go back over the calculation, however, you will find that there is no step that
depends on these relativistic effects in any way. Eq. (2.15) is a rigorous consequence of
Eq. (2.9) and the construction of the comoving coordinate system. In fact, Eq. (2.15) is an
exact result of general relativity, which includes the effects of both special relativity and
gravity. It is possible to apply Eq. (2.15) to the special case in which gravity is negligible,
and the usual result of special relativity can, with some effort, be recovered. (You will be
given the opportunity to carry out this exercise, with some hints, on a problem set later
in the term.) However, the content of Eq. (2.15) differs from the special relativity result
in two ways:

(1) The special relativity result holds exactly only in the absence of gravity,
while Eq. (2.15) includes the effects of gravity — provided, of course, that
one knows the effects of gravity on the scale factor a(t).

(2) Eq. (2.15) expresses the Doppler shift in terms of the behavior of the scale
factor a(t) for objects at rest in a comoving coordinate system, while the
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special relativity result expresses the Doppler shift in terms of the velocity
as measured in an inertial coordinate system. Thus, the two results can-
not be compared until one works out the relationship between these two
coordinate systems. When Eq. (2.15) is applied to the special case in which
gravity is negligible, one finds that the details of special relativity — time
dilation, Lorentz-Fitzgerald contraction, etc. — must be used in order to
relate these two coordinate systems.

While the cosmological Doppler shift is in general different from the special relativity
Doppler shift, since it takes into account the effects of gravity, we will see in the next
set of lecture notes that the effects of gravity grow with distance. So, if the source and
observer are close, we would expect that the effects of gravity would be negligible and
the two answers would agree.

To see this, we use the fact that if the source and observer are close, then the
transmission time δt ≡ tO − tS will be small. Over this small time interval, we can
apporximate a(t) by its first order Taylor expansion about tS :

a(t) = a(tS) + ȧ(tS)(t− tS) + . . .

= a(tS) [1 +H(tS)(t− tS) + . . .] ,
(2.16)

where an overdot denotes a time derivative, and use was made of Eq. (2.8). Applying
this eqation to t = tO,

a(tO) = a(tS) [1 +H(tS) δt+ . . .] . (2.17)

The coordinate separation ∆x between source and observer can be found by integrating
the coordinate velocity given by Eq. (2.9):

∆x =

∫ tO

tS

c dt

a(t)
=

∫ tS+δt

tS

c dt

a(tS) [1 +H(tS)(t− tS) + . . .]

=
c

a(tS)

∫ tS+δt

tS

dt [1−H(tS)(t− tS) + . . .] =
c

a(tS)

[
δt− 1

2
H(tS)δt2 + . . .

]
.

(2.18)
Since we are interested in very small δt, we use the lowest order result that ∆x =
c δt/a(tS). If we let δr denote the physical distance between source and observer at time
tS , then to lowest order in δt,

δr = a(tS) ∆x = c δt , (2.19)

which we might well have foreseen. Eq. (2.19) is a consequence of the fact that if δt is
small, then the effect of the expansion of the universe during the time δt is negligible.
The cosmological redshift is then given by

1 + z =
a(tO)

a(tS)
= 1 +H(tS) δt+ . . . , (2.20)
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where we used Eq. (2.16). Then by using Eqs. (2.20) and (2.19) we find

z = H(tS) δt =
H(tS)c δt

c
=
H(tS)δr

c
=
v

c
, (2.21)

where in the last step we used Hubble’s law, Eq. (2.1). To lowest order in β ≡ v/c, this
agrees with the special relativity Doppler formula,

z =

√
1 + β

1− β
− 1 (relativistic), (2.22)

where β = v/c.

Although the cosmological redshift is caused by both gravity and by motion, there
is no natural way to divide it into these two parts. You might suggest, for example, that
we define the part due to gravity by asking how much the Doppler shift would change
if gravity were omitted from the calculation. The problem is that the trajectories of the
source, the observer, and the light rays would all be different in the absence of gravity.
Thus, we cannot ask what the redshift would be in a universe that is like ours, but without
gravity. If gravity were not involved, there would not be any universe that is like ours.
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THE DYNAMICS OF NEWTONIAN COSMOLOGY

INTRODUCTION:

The dynamics of the universe on the large scale seems to be controlled by gravity,
and so any theoretical work in cosmology rests heavily on the foundations of a theory
of gravity. Among professionals, the dynamics of cosmology is always treated in the
context of the relativistic theory of gravity developed by Einstein in 1915 — the theory
which is known by the misleading name of “General Relativity”. We believe that, at
the classical level, general relativity is almost certainly the correct theory of gravity. (At
extraordinarily high energies, like those encountered during the first 10−45 second after
the big bang, a quantum theory of gravity would be required. At present, however,
gravity at the quantum level is not well-understood. Many physicists believe that string
theory is likely to be the correct quantum theory of gravity, but there are many questions
about string theory that have not yet been answered.) In cosmology, general relativity
is necessary to make sure that the possibly non-Euclidean geometry of the universe is
being treated correctly. General relativity is also required to give an accurate treatment
of the gravitational effect of electromagnetic radiation (e.g., light), which is significant
in the early universe and which is certainly a relativistic phenomenon. However, a good
deal of cosmology can be understood strictly in terms of Newtonian gravity, and in
these notes we will explore cosmology in that context. Even the gravitational effects of
electromagnetic radiation can be inferred correctly by using Newtonian physics combined
with some well-motivated guesses.

The universe is believed to be homogeneous, so the key problem is to understand
the gravitational dynamics of a homogeneous distribution of mass. We will consider a
distribution of mass with infinite extent, with a uniform mass density ρ.

This is a subtle problem, and in fact Isaac Newton himself got it wrong. Newton
assumed that since the mass distribution is symmetric about any point, the gravitational
field at any point must vanish, since there is no preferred direction in which it could
point. He therefore believed that a static configuration of “fixed stars” could exist in
equilibrium. Newton discussed this issue in a series of letters he wrote to the young
theologian, Richard Bentley, during 1692-93*

* The original letters are still kept at Trinity College, Cambridge, and are published in
H. W. Turnbull, ed., The Correspondence of Isaac Newton, Volume III, 1688-1694 (Cam-
bridge University Press, Cambridge, England, 1961, p. 233). They are also reprinted
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“As to your first query, it seems to me that if the matter of our sun and
planets and all the matter of the universe were evenly scattered throughout
all the heavens, and every particle had an innate gravity toward all the rest,
and the whole space throughout which this matter was scattered was but
finite, the matter on the outside of this space would, by its gravity, tend
toward all the matter on the inside and, by consequence, fall down into
the middle of the whole space and there compose one great spherical mass.
But if the matter was evenly disposed throughout an infinite space, it could
never convene into one mass; but some of it would convene into one mass
and some into another, so as to make an infinite number of great masses,
scattered at great distances from one to another throughout all that infinite
space. And thus might the sun and fixed stars be formed, supposing the

matter were of a lucid nature.†” (December 10, 1692)

The point of view that Newton described in his response to Bentley apparently represents
a departure from his earlier reasoning. Previously Newton had believed that the fixed
stars occupied a finite region in an infinite void, but now he realized that such a config-
uration would be driven by gravity to collapse. If the stars were distributed uniformly
over the infinity of space, however, Newton concluded that static equilibrium could be
maintained.*

in Milton K. Munitz, ed., Theories of the Universe: From Babylonian Myth to Modern
Science (The Free Press, New York, 1957, p. 211). Best of all, thanks to Google Books
and the Newton Project, the complete letters from Newton to Bentley are now avail-
able online: http://books.google.com/books?id=8DkCAAAAQAAJ&pg=PA201 and
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00254,
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00255,
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00256, and
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00258.
† By “lucid nature,” Newton was apparently referring to the distinction that he sup-

posed exists between the “lucid matter” of the sun and stars, and the “opaque” matter
of the earth and other planets. The continuation of the text shows Newton’s thoughts on
this issue, and also on the role of divine intervention in the creation of the solar system:
“But how the matter should divide itself into two sorts, and that part of it which is to
compose a shining body should fall down into one mass and make a sun and the rest
which is fit to compose an opaque body should coalesce, not into one great body, like the
shining matter, but into many little ones; or if the sun at first were an opaque body like
the planets or the planets lucid bodies like the sun, how he alone should be changed into
a shining body whilst all they continue opaque, or all they be changed into opaque ones
whilst he remains unchanged, I do not think explicable by mere natural causes, but am
forced to ascribe it to the counsel and contrivance of a voluntary Agent.”

* Newton’s involvement in this problem was discussed in a fascinating article by Ed-
ward Harrison, “Newton and the Infinite Universe,” Physics Today, February 1986,
p. 24, which is available online with an MIT certificate at http://scitation.aip.org.

http://books.google.com/books
http://www.newtonproject.sussex.ac.uk
http://books.google.com/books?id=8DkCAAAAQAAJ&pg=PA201
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00254
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00255
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00256
http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00258
http://scitation.aip.org.libproxy.mit.edu/content/aip/magazine/physicstoday/article/39/2/10.1063/1.881049
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The fallacy of Newton’s argument was not really understood until the beginning of
the 20th century. When Einstein first developed his theory of general relativity, he very
quickly tried to apply it to the universe as a whole, and at first he was rather shocked
to learn that the theory did not allow a static solution. According to the mathematics
of the theory, an initially static configuration would lead to a universal collapse, as each
particle of matter in the universe attracted all of the others. Einstein chose to modify
general relativity by adding a “cosmological term” — a kind of universal repulsion — so
that a static solution would be possible. In hindsight, one can see that the same reasons
which preclude a static solution in the theory of general relativity (without a cosmological
constant) apply also to the Newtonian case.

The nonexistence of a static equilibrium for an infinite homogeneous distribution of
mass can be seen very easily by using some mathematics that was unavailable to Newton.
Newton formulated his law of universal gravitation in the language of an inverse square
force law, but we now know how to reformulate such a law in terms of flux integrals. Just
as Coulomb’s law implies Gauss’s law, Newton’s inverse square law of gravity gives rise
to a Gauss’s law of gravity:

~E =
q

r2
r̂ implies

∮
~E · d~a = 4πqenclosed (3.1)

~g = −GM
r2

r̂ implies

∮
~g · d~a = −4πGMenclosed , (3.2)

where ~g is the gravitational acceleration vector, and the integrals are over an arbitrary
“Gaussian” surface. If Eq. (3.2) is applied to a uniform distribution of mass, then clearly
Menclosed > 0 for any Gaussian surface that encloses a nonzero volume. Thus the left
hand side must also be nonzero, and so one cannot have ~g = 0, as a static universe would
demand.

Another formulation of Newtonian gravity takes the form of a gravitational Poisson’s
equation:

∇2φ = 4πGρ , where ~g = −~∇φ , (3.3)

and ρ is the mass density. Here ∇2 is the Laplacian,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

libproxy.mit.edu/content/aip/magazine/physicstoday/article/39/2/10.1063/1.881049 or
for purchase at http://scitation.aip.org/content/aip/magazine/physicstoday/article/39/
2/10.1063/1.881049.
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and ~∇ is the gradient,

~∇ ≡ ı̂ ∂
∂x

+ ̂
∂

∂y
+ k̂

∂

∂z
.

In this formalism one can also see that ~g = 0 implies φ = constant, which in turn implies
ρ = 0, so a static universe is possible only if it is empty.

Historically, I believe that the inconsistency of the static universe was overlooked
in the context of Newtonian mechanics because Newtonian gravity is usually described
in terms of an action at a distance. In this formulation, the relevant issues are subtle.
General relativity, on the other hand, is always formulated in terms of local differential
equations analogous to Eq. (3.3), and in this formulation the result is unmistakable.

I have now discussed the reasons why a homogeneous mass distribution must produce
a gravitational field, but I have not yet discussed what goes wrong if one tries to calculate
the force on a given particle by summing the Newtonian gravitational forces caused by
all the other particles. Since these other particles extend with uniform density to infinity
in all directions, it seems obvious that the integration over the mass distribution cannot
pick out any preferred direction, and therefore must give no gravitational force. The
problem with using this method, however, is that the integration is ambiguous. We will
show that, due to the poor convergence properties of the integral, the integration has no
unique answer, but instead can give any answer that one wants, depending on the order
with which the different regions of the integration volume are included.

To see how this can happen, let us first consider some general properties of integrals.
Suppose that f(x) is a function such that∫ ∞

−∞
f(x) dx (3.4)

converges, in the sense that

lim
L→∞

∫ L

−L
f(x) dx (3.5)

exists. Suppose, however, that ∫ ∞
−∞
|f(x)| dx (3.6)

diverges (i.e., is infinite). Such integrals are called conditionally convergent, and in general
their value is ambiguous. The answer depends on the order in which the different regions
of the x-integration are added up. Conversely, if the integral (3.6) converges, then the
integral (3.4) is called absolutely convergent, and its value is independent of the order in
which the different regions of integration are added.
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As a simple example, consider the function

f(x) =

{
+1 if x > 0

−1 if x < 0 ,
(3.7)

the integral of which clearly satisfies the properties of conditional convergence as described
above. To illustrate the ambiguity of the integral, note first that

lim
L→∞

∫ L

−L
f(x)dx = 0. (3.8)

This limit is trivial, since the integral is zero for any value of L. Now let’s add the
contributions in a different order, starting at some arbitrary point x = a. We take the
region of integration larger and larger, but always centered on x = a. That is, we can
define the integral

lim
L→∞

∫ a+L

a−L
f(x)dx . (3.9)

You should be able to convince yourself that the integral is equal to 2a for any L ≥ a,
and therefore the limit is 2a. Since we can choose a to be anything we like, we can get
any answer that we like. Note that the integrals shown as (3.5) and (3.9) are both ways
of giving precise meaning to the integral (3.4), so one concludes that the integral (3.4) is
ambiguous. Mathematically one can (and usually does) define the integral (3.4) to be
the expression (3.5), but one must keep in mind that this is an arbitrary choice that is
unlikely to have physical meaning. When x represents a spatial coordinate, as it does
here, then the expressions (3.5) and (3.9) differ only by the choice of where the origin of
the coordinate system is placed, while physically this choice is completely arbitrary.

For an infinite distribution of mass with uniform density ρ, the gravitational accel-
eration at a point P is given formally by the integral

~g(P ) =

∫
Gρd3~r′

~r′ − ~rP
|~r′ − ~rP |3

, (3.10)

where ~rP is a vector from the origin to the point P . We will see that this integral is
conditionally convergent, and therefore ~g(P ) can have any value, depending on the order
in which the contributions from different values of ~r′ are added. Newton’s law of gravity
says nothing about the order in which the contributions should be added, since in normal
situations vector addition is commutative.

To see how this integral behaves, suppose we first determine the value of ~g at an
arbitrary point P by summing the contributions from spherical shells that are centered
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at P :

In this case one can argue by symmetry that each shell contributes exactly zero to ~g, and
hence the sum must be zero.

The integral clearly converged (in fact it vanished!), but it is not absolutely conver-
gent. If we inserted absolute value signs in the integrand, we can evaluate the integral
by transforming to polar coordinates with P at the origin. We find a linear divergence:∫

Gρd3~r′
1

|~r′ − ~rP |2
= 4πGρ

∫
r′2 dr′

1

r′2
=∞ .

Thus the integral is convergent but not absolutely convergent, so it is conditionally con-
vergent.

To see the ambiguity that we expect due to the conditional convergence, we need
to carry out the integration of Eq. (3.10) with a different ordering. Spherical shells are
still very convenient, but suppose we choose spherical shells centered around a different
origin. To see what we find, let us calculate ~g at P by summing the contributions from
spherical shells which are centered at some other point Q, located a distance b away:

The gravitational field due to a thin spherical shell of mass is well known — inside the
shell the field vanishes identically, and outside the shell the field is the same as it would
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be if the same mass were concentrated at the point in the center of the sphere. For the
shells centered at Q, note that the point P will lie inside the shell for all shells with radius
r > b. These shells will therefore give no contribution to the gravitational field at P .
The shells with r < b, on the other hand, which are shown with shading in the diagram
above, will produce a gravitational field at P . Specifically, they will produce a field at P
which is the same as the field that would be produced if the entire mass (for r < b) were
concentrated at Q. Thus, by this method of summation we find

~g =
GM

b2
êQP , (3.11)

where M = 4π
3 b

3ρ is the combined mass of all the shells with r < b, and êQP is a unit
vector pointing from P to Q. So the answer we get depends on the order of summation.
Since we could have chosen the point Q to be any distance and in any direction, we could
have gotten any answer we wanted.

Thus we can conclude that the integral which determines ~g is ill-defined. By summing
the gravitational force using concentric spherical shells centered at different points Q, we
can get any answer we want. But what about the simple symmetry argument, which
says that the gravitational force must be zero because there is no preferred direction for
it to point? It was this argument that Newton found persuasive in the letter to Bentley
cited earlier. Newton might phrase the reasoning in the following way: If there is to be
a force on the mass located at P , then the force would have to point in some direction.
But since all directions are identical in this problem, the force must vanish. To convince
Newton that he was wrong, we would have to persuade him that this problem is very
special, because there is no way to define an inertial reference frame. Ordinarily one can
define an inertial frame by imagining test particles at infinite distances from all others
— the inertial frames are those in which these test particles have constant velocities. In
the problem of an infinite uniform mass distribution, however, there is no place to put
these test particles. Thus, one cannot measure the absolute acceleration of any particle,
but instead one must settle for measuring the relative acceleration of one particle with
respect to another. One can decide, for example, to measure the accelerations of all
particles relative to P . One then finds, as we will see later, that all the accelerations
point toward P , and that the acceleration of any given particle has a magnitude which
is proportional to the distance from P . If one had chosen to measure all accelerations
relative to Q, one would have found a similar pattern centered on Q.

THE MATHEMATICAL MODEL:

The approach that I will follow here is a bit more involved than that used in most
textbooks, but it also leads to a stronger result. Most textbooks simply assume that a
uniform distribution of mass will remain uniform, but here we will show that the inverse
square law of gravity leads to this result. Most other force laws would not.
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In order to make the problem of an infinite uniform mass distribution well defined,
it is necessary to treat the concept of infinity carefully. Specifically, the safest way to
think about infinity is to think of it as a limit of finite quantities. The easiest approach,
which we will use, is to treat the mass distribution as a uniform sphere of radius Rmax.
Only at the end of the calculation will we take the limit Rmax →∞.

When we choose to use a sphere of mass to define our problem, it is important to
ask if the answer would have turned out differently if we had chosen some other shape.
I will not try to demonstrate the answer to this question, but I will tell you what it
is. Many shapes, such as any of the regular polyhedra (tetrahedron, cube, octahedron,
dodecahedron, or icosahedron), would give the same answer in the limit in which the
size approaches infinity. If we had used a rectangular solid, however, the answer would
have been different. [For those students who have learned about multipole expansions,
I mention that it is only the quadrupole moment of the shape that matters in the limit
of infinite size.] The solution obtained from the rectangular solid would correspond to
an anisotropic model of the universe, in which the gravitational field would be different
in different directions. General relativity also allows for the possibility of anisotropic
homogeneous solutions, but I have never explored how closely the properties agree. Since
our universe is highly isotropic, we are justified in using the sphere to formulate our
problem.

We will treat the matter as a nonrelativistic dust of particles which can move freely,
with gravity supplying the only significant force. The assumption that the universe is
dominated by nonrelativistic matter and that gravity is the only significant force appear
to be valid assumptions for our own universe for most of its history, but not for all
of it. Recall that in the context of relativity, energy and mass are really the same
thing, related by the celebrated formula E = mc2, where c is the speed of light. In
the early universe there was a high density of energy in electromagnetic radiation, and
this energy density can be expressed as a mass density by dividing it by c2. For the
first approximately 50,000 years of cosmic history, the mass density of the universe was
dominated by the electromagnetic radiation and highly relativistic particles, both of which
lead to significant pressure forces. These pressure forces, in turn, lead to a contribution
to the gravitational force, since general relativity implies that pressures as well as mass
or energy densities can serve as the source of a gravitational field. Cosmologists call this
early period “radiation-dominated”, and the period in which the universe is dominated by
nonrelativistic dust is called “matter-dominated”. Starting in about 1998, astronomers
have been gathering evidence that for the past 5 billion years or so the expansion of the
universe has not been slowing as it would in a matter-dominated universe, but instead
it has been accelerating. These observations were a big surprise to most of us, and they
suggest that the universe today is dominated by a nonzero energy density in the vacuum
— which is equivalent to what Einstein called the cosmological constant — or some form
of peculiar matter that behaves very similarly. The term “dark energy” has been coined
to describe this form of energy, which remains rather mysterious as the name suggests.
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So, it now appears that the universe was radiation-dominated for the first 50,000 years,
then became matter-dominated for about 9 billion years, and then “recently” became
dark-energy-dominated, for about the last 5 billion years. Later on we will see how the
pressure forces of the radiation-dominated period can be incorporated into the model,
and we will also learn how to calculate the effects of vacuum energy. For now, however,
we will confine our attention to the matter-dominated era.

We will begin the mathematical model of our idealized universe at some arbitrary
initial time ti. At that time we will assume that the universe consists of a sphere of matter
with radius Rmax,i, with uniform mass density ρi. For convenience we will introduce an
x-y-z coordinate system, with the origin located at the center of the sphere. We will
treat the matter as a nonrelativistic dust of particles which can move freely, with gravity
supplying the only significant force.

The next step is to specify the initial velocity of each of the particles. In order to agree
with the observed properties of the universe, we choose this initial velocity distribution
according to Hubble’s law: the particles at position ~r are given an initial velocity of the
form

~vi = Hi~r , (3.12)

where Hi denotes the initial value of the Hubble “constant”. Thus, the initial state of
the model is described by the parameters ρi, Hi, and Rmax,i.

The problem now is to calculate the evolution of this model, using Newton’s law of
gravity. Since each particle is started along a radial trajectory, and since the only forces
will be radial, it follows that each particle continues to move along a radial trajectory.
Thus we need only keep track of the radius of each particle as a function of time. We
will follow an arbitrary particle with initial radius ri, and we will denote its trajectory by
r(ri, t). To compute the force on this particle due to all the other particles in the model
universe, we can divide the mass distribution into thin spherical shells — with each shell
centered on the origin and extending from some radius r to r + dr. We then use the
result quoted earlier for the gravitational field of a thin spherical shell. One concludes
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that all shells with r < ri will produce a gravitational field at ri equivalent to that of a
point mass at the origin, while all shells with r > ri will contribute nothing at all to the
gravitational field at ri. The mass of all the shells with r < ri is given by

M(ri) =
4π

3
r3i ρi . (3.13)

It is conceivable that at some point in the evolution of the system there could be a
crossing of shells — that is, two trajectories r(ri, t) corresponding to two different values
of ri could cross. However, since initially the Hubble expansion is carrying each shell away
from its neighbors, it is clear that a shell crossing will not happen until some nonzero
time interval has elapsed. (We will in fact find that shell crossings never occur, but we
have no way of knowing this before we start.) As long as no shell crossings have occurred,
the mass interior to the shell which began at radius ri is always equal to the expression
for M(ri) given in Eq. (3.13), since mass is conserved. The gravitational acceleration
acting at an arbitrary time t on a particle with initial radius ri is then given by

~g = −GM(ri)

r2(ri, t)
r̂ , (3.14)

where r̂ denotes a unit vector in the radial direction. Taking the radial component of
this vector equation and using Eq. (3.13), one has

r̈ = −4π

3

Gr3i ρi
r2

, (3.15)

where r ≡ r(ri, t), and an overdot denotes a derivative with respect to t. The initial
condition on the velocity given in Eq. (3.12) can be rewritten in this notation as

ṙ(t=ti) = Hiri . (3.16)

Finally, the initial value of r(ri, t) is given by

r(ri, ti) = ri . (3.17)

The mathematical problem is then to solve Eq. (3.15), subject to the initial conditions
of Eqs. (3.16) and (3.17).

First, note that the dependence on ri in these equations can be eliminated by a
simple rescaling of the as yet unknown function r(ri, t). That is, define

u(ri, t) ≡ r(ri, t)/ri . (3.18)
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Note that ri does not depend on t, and it can therefore be treated as a constant as far
as time derivatives are concerned. Eqs. (3.15)-(3.17) can then be rewritten as

ü = −4π

3

Gρi
u2

, (3.19)

u̇(t=ti) = Hi , (3.20)

u(ri, ti) = 1 . (3.21)

These equations specify the initial value and time derivative of u, and its acceleration at
all times, and they therefore completely determine the function. Since these equations do
not involve ri, it follows that u(ri, t) does not actually depend on ri at all. This means
that u(ri, t) is really just an overall scale factor, and we can define

a(t) ≡ u(ri, t) . (3.22)

Eq. (3.18) then becomes r(ri, t) = a(t)ri, which means that the particle locations at any
given time t are given by a rescaling of their original positions, by the scale factor a(t).
Note also that the mean mass density inside a sphere of radius r(ri,t) is given by

ρ(t) =
M(ri)
4π
3 r

3
=

4π
3 r

3
i ρi

4π
3 r

3
=

ρi
a3(t)

, (3.23)

and is also independent of ri. The mass density thus remains completely uniform. Using
Eqs. (3.22) and (3.23), Eq. (3.19) can be rewritten as

ä = −4π

3
Gρ(t)a . (3.24)

Eq. (3.24) describes how the expansion of the scale factor is slowed down by the gravita-
tional effects of the mass density ρ(t).

We can now return to the issue of shell crossing, and see that it never occurs. From
Eqs. (3.18) and (3.22) we know that r(ri, t) = a(t)ri, as long as our equations are valid.
Thus, if the first shell crossing occurs at time tshell, then the relation r(ri, t) = a(t)ri
must hold for all t between ti and tshell. But if r(ri, t) = a(t)ri holds at time tshell− ε, for
arbitrarily small ε > 0, then there can be no shell crossing at t = tshell, since r(ri, t) =
a(t)ri implies that no two shells with different values of ri are about to touch.
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The limit Rmax → ∞ is now seen to be trivial. As discussed earlier in the section
on “The Homogeneously Expanding Universe” in Lecture Notes 2, this kind of uniform
expansion by an overall scale factor a(t) appears to be absolutely homogeneous to the
inhabitants of this idealized universe. Looking from the outside we see a sphere with a
center and an edge, but someone living anywhere inside the sphere would simply see all
of his neighbors receding in a Hubble pattern, with the Hubble expansion rate given by

H(t) = ȧ/a . (3.25)

Only someone living so near to the edge that he could actually see it would have any way
of knowing that the system was not globally homogeneous. Thus, the limit Rmax → ∞
which we need to take is trivial. In fact, for observers on the interior of the sphere,
nothing whatever depends on Rmax.

A CONSERVATION OF ENERGY EQUATION:

The equations of the last section completely determine the behavior of the model
universe, so our only remaining task is to examine the consequences of these equations.

As with most Newtonian systems, conservation of energy is a useful concept. Con-
servation of energy is of course not an independent statement, but instead follows as a
consequence of the Newtonian equations of motion. In this case Eq. (3.19) can easily be
used to obtain such an equation. [Eq. (3.24), which gives the deceleration in terms of
the mass density ρ, is more useful for most purposes. But it cannot be used by itself to
give a conservation of energy equation, since the time dependence is not determined until
one adds information about the time dependence of ρ(t). One can of course combine
Eq. (3.24) with Eq. (3.23) describing the evolution of ρ(t), but this is equivalent to using
Eq. (3.19).] The conservation equation is obtained from Eq. (3.19) by first replacing u
by a, then bringing both terms to one side, and then multiplying by ȧ:

ȧ

{
ä+

4π

3

Gρi
a2

}
= 0 .

Using elementary calculus, the result can be rewritten as

dE

dt
= 0 , (3.26)

where

E =
1

2
ȧ2 − 4π

3

Gρi
a

. (3.27)
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E is not exactly an energy, and does not even have the right units to be an energy.
However, if one considers a test particle of mass m that moves with the Hubble expansion
starting at radius ri, then the quantity Ephys ≡ mr2iE is closely related to the energy of
that particle. Specifically,

Ephys = mr2i

{
1

2
ȧ2 − 4π

3

Gρi
a

}
=

1

2
m (ȧri)

2 − GmM(ri)

ari
,

where M(ri) is given by Eq. (3.13). Then, recognizing that a(t)ri is the radius r of the
test particle at time t, we can rewrite Ephys as

Ephys =
1

2
m

(
dr

dt

)2

− GmM(ri)

r
. (3.28)

This expression is the total energy of a particle of mass m moving radially in the gravita-
tional field of a point particle of mass M(ri) located at the origin, where we have defined
the zero of potential energy at infinity. If the test particle is at the edge of the sphere,
with r = Rmax(t), then this is the correct expression for the total energy of the test parti-
cle, since for all r ≥ Rmax(t), the gravitational effects of the sphere and a point mass are
identical. If the test particle is at a smaller radius, however, then Ephys is still conserved,
but it is not really the total energy. The mass that is located between r and Rmax(t)
would affect the amount of energy needed to bring the test particle from infinity, and
hence would affect the potential energy of the test particle, but the effect of this mass is
not included in Ephys. Nonetheless, the mass that is located between r and Rmax(t) does
not affect the motion of the test particle, so we can define an analogue problem in which
this mass is absent. That is, we can define an analogue problem in which Rmax,i is chosen
so that the test particle is on the edge. For the analogue problem, Ephys is truly the total
energy of the test particle. The motion of the test particle is the same for the analogue
problem and the original problem, so we can understand the conservation of Ephys as a
consequence of energy conservation for the analogue problem. It can also be shown, and
you will have to opportunity to show on Problem Set 3, that E is proportional to the
total enery, kinetic plus potential, of the entire sphere.

Using (3.23) to express ρi in terms of ρ(t), Eq. (3.27) can be converted to the form ȧ
a

2

=
8π

3
Gρ+

2E

a2
. (3.29)

It is more or less standard notation to introduce the variable k, defined by

k = −2E

c2
, (3.30)
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and then to rewrite Eq. (3.29) as

 ȧ
a

2

=
8π

3
Gρ− kc2

a2
. (3.31)

Eqs. (3.24) and (3.31) are the two key results of Newtonian cosmology. As long as
the mass density is dominated by nonrelativistic matter, as has been the case for most
of the history of our universe, these equations are both identical to the corresponding
equations obtained from general relativity. They are called the Friedmann equations,
after Alexander Friedmann, the Russian meteorologist who first derived the equations
from general relativity in 1922. Some authors, however, including Barbara Ryden, use
the term Friedmann equation only for Eq. (3.31).

UNITS:

In Lecture Notes 2 I talked about a comoving coordinate system, with coordinates
measured in “notches”. The scale factor a(t) is then measured in m/notch. The concept
of a notch is actually not used, to my knowledge, in any of the standard cosmology texts,
but nonetheless I find it a very useful way of thinking — it helps to clarify what exactly
the scale factor is, and when it is needed in an equation.

In the last two sections the concept of a notch did not appear, so now I would like
to reinstate it. As written, one would infer that the quantity ri, denoting the radial
coordinate of a given particle at time ti, is to be measured in meters. Note, however,
that we used the coordinate ri not merely to describe the position of the particle at ti,
but also as a permanent label of the trajectory r(ri, t). The coordinates ri are in fact
being used as comoving coordinates, and only at the special time ti does the unit of these
comoving coordinates correspond to the meter. It thus makes sense to rename the unit
of ri as a notch. The time ti is then the time at which 1 notch corresponds to 1 m. The
trajectory function r(ri, t) continues to be measured in meters, so by Eqs. (3.18) and
(3.22), the scale factor a(t) has the units of m/notch. The variable k then has the units
of notch−2.

Note, by the way, that we have still not defined the notch, since the time ti is
completely arbitrary. There are two common conventions. Some books, such as the text
by Barbara Ryden, define a = 1 m/notch today. Many other books, however, adopt the
convention that whenever k 6= 0, one defines the notch such that k has the numerical
value of ±1. These books tend to leave the notch arbitrary when discussing the k = 0
case.
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NATURE OF THE SOLUTIONS:

The equations of Newtonian cosmology have now been written down, and our only
remaining task is to examine the behavior of the solutions.

The solutions belong to three different classes, depending on whether E is positive,
negative, or zero. The qualitative behavior can be seen most clearly from Eq. (3.27),

E =
1

2
ȧ2 − 4π

3

Gρi
a

.

If E is positive (k < 0), then one sees that da/dt can never vanish, since it gives the
only positive contribution to the right-hand side. Thus an expanding universe with k < 0
would continue to expand forever. In a universe of this type there is not enough mass to
reverse the expansion of the Hubble flow. Such a universe is called open. On the other
hand, if E is negative (k > 0), then one sees that da/dt equals zero when

a = −4πGρi
3E

. (3.32)

This universe reaches a maximum size, and then the pull of gravity overcomes the ex-
pansion and causes the universe to collapse into what is sometimes called a “big crunch”.
A universe of this type is called closed. On the border between these two possibilities is
the special case of E = 0 (k = 0). For reasons that will be discussed in Lecture Notes 5,
such a universe is called flat.

The case k = 0 implies that the mass density ρ must have a special value ρc, which
can be found from Eq. (3.31) (remembering that ȧ/a = H):

ρc =
3H2

8πG
. (3.33)

The quantity ρc is called the critical mass density — it is that mass density which puts
the universe right on the borderline between eternal expansion and eventual collapse.
Numerically, if one takes H0 = 100h0 km-s−1-Mpc−1 (as in Eq. (3.3)) and G = 6.674×
10−11 m3kg−1s−2, one finds that

ρc = 1.88h20 × 10−26 kg/m
3

= 1.88h20 × 10−29 g/cm
3
, (3.34)

where g is the abbreviation for gram. If h0 = 0.677, which is the estimate from Planck
2018,* currently the best estimate, then ρc = 8.6 × 10−27 kg/m3. The proton mass is

* N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological
parameters,” Table 2, Column 6, arXiv:1807.06209.

https://arxiv.org/abs/1807.06209
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1.67 × 10−27 kg, which means that the critical mass density corresponds to about 5.2
protons per cubic meter. Although this mass density seems amazingly small, the actual
mass density of the universe is known to be very close to it.

The ratio ρ/ρc is standardly denoted by the Greek letter Omega (Ω). If the dark
energy is included, then the total Ω for our universe is now known to an accuracy of
about half of a percent, and to within this accuracy it is equal to 1* [This is good news
for theorists, because the inflationary model of cosmology predicts that Ω = 1, and there is
also a theoretical plausibility argument in favor of Ω = 1 that can be made independently
of inflation. We will return to these issues later in the course.] According to the Planck

2018 estimates† the dark energy is believed to comprise about 69% of Ω. Only 5% of Ω is
due to “ordinary” matter, like the material that we are made out of. “Ordinary” matter
is also called baryonic matter, since the bulk of its mass is that of protons and neutrons,
which belong to a class of particles called baryons. The remaining 26% of the total mass
density is dark matter. This is matter that is known to exist because of its gravitational
effects on other matter, but which is not detected in any other way. The composition
of the dark matter is unknown, but it is most likely in the form of a dilute gas of some
so-far-undiscovered weakly interacting particle.

The time evolution of the k = 0 case is rather easy to calculate. From Eq. (3.27),
one sees that E = 0 implies that

da

dt
=

const

a1/2
. (3.35)

The value of the const will not be relevant, since it will depend on the arbitrary definition
of the notch. One can integrate this equation by rewriting it as

a1/2da = const dt , (3.36)

which integrates to give
2

3
a3/2 = (const)t+ c′ . (3.37)

The ambiguity of the constant of integration c′ simply reflects our freedom to redefine
the origin of time. It is traditional in big bang cosmology to define the zero of time to
be the moment when the scale factor a(t) vanishes — sometimes regarded as the instant
of the big bang. One then has the following important result which holds for a flat,
matter-dominated universe:

a(t) ∝ t2/3 . (3.38)

On Problem Set 2 you have explored the consequences of this behavior for the scale factor,
and now you know how to derive it.

* Planck 2018 VI, op. cit., Table 4, Column 4.
† Planck 2018 VI, op. cit., Table 2, Column 6.
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MORE DYNAMICS OF NEWTONIAN COSMOLOGY

THE AGE OF A FLAT UNIVERSE:

We showed last time that the scale factor for a flat, matter-dominated universe
behaves as

a(t) = bt2/3 , (4.1)

for some constant of proportionality b. This model universe is “flat” in the sense that
k = 0 (or Ω = 1), and it is “matter-dominated” in the sense that the mass density
is dominated by the rest mass of nonrelativistic particles. (The assumption of matter-
domination entered the derivation when we assumed that the total mass M(ri) contained
within a given comoving radius ri does not change as the system evolves. Photons or
highly relativistic particles, by contrast, would redshift as the universe expands, and hence
they would lose energy. In Lecture Notes 6 we will discuss the evolution of a universe
dominated by relativistic particles, and in Lecture Notes 7 we will describe the effects of
a cosmological constant, or vacuum energy. Since the energy loss of an expanding gas is
proportional to its pressure, the “matter-dominated” case can also be described as the
case in which the pressure is negligible.) Using Eq. (4.1), it is easy to calculate the age of
such a universe in terms of the Hubble expansion rate. In Lecture Notes 2 it was shown
that the Hubble expansion rate is given by

H(t) = ȧ/a , (4.2)

where the over-dot has been used to denote a derivative with respect to time t. Thus,

H(t) =
2
3bt
−1/3

bt2/3
=

2

3t
. (4.3)

Recall that we have defined the origin of time so that the scale factor a(t) vanishes at
t = 0, so t = 0 is the earliest time that exists within the mathematical model. We
therefore refer to t as the age of the universe, which can then be expressed in terms of
the Hubble expansion rate by

t =
2

3
H−1 . (4.4)

We should keep in mind, however, that we would be foolish to pretend that we actually
understand the origin of the universe, so the phrase “age of the universe” is being used
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loosely. It is almost certain that our universe underwent an extremely hot dense phase
at t ≈ 0, and we can call this phase the big bang. The variable t represents the age of
the universe since the big bang, but we can only speculate about whether the big bang
actually represents the beginning of time. As we will see near the end of the course,
the current understanding of inflationary cosmology suggests that the big bang was very
likely not the beginning of time.

Consistency requires that the age of the universe be older than the age of the oldest
stars, and this requirement has turned out to be a strong constraint. It was a very serious
problem in the time shortly after Edwin Hubble’s first measurement, when Hubble’s bad
estimate for the Hubble expansion rate led to age estimates of only several billion years.
More recently, as quoted in Lecture Notes 2, the Planck satellite team, using their own
data combined with other data, estimated that H0 = 67.66±0.42 km-s−1-Mpc−1.* Using
Eq. (4.4) and the relationship

1

1010 yr
= 97.8 km-s−1-Mpc−1 ,

we find that a flat matter-dominated universe with a Hubble expansion rate in this range
(i.e., 67.24 to 68.08 km-s−1-Mpc−1) must have an age between 9.58 and 9.70 billion years.

Today the oldest stars are believed to be those in globular clusters, which are tightly
bound, nearly spherical distributions of stars that are found in the halos of galaxies. A

careful study of the globular cluster M4 by Hansen et al.†, using data from 123 orbits of
the Hubble Space Telescope, determined an age of 12.7 ± 0.7 billion years. Krauss and

Chaboyer‡ argue that Hansen et al. did not take into account all the uncertainties, and
claim that the globular clusters in the Milky Way (including M4) have an age of 12.6+3.4

−2.2
billion years. (Both sets of authors are quoting 95% confidence limit errors, also called
2σ errors, meaning that the probability of the true value lying in the quoted range is
estimated at 95%.) Krauss and Chaboyer estimate that the stars must take at least 0.8
billion years to form, implying that the universe must be at least 11.2 billion years old.

* N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological
parameters,” Table 2, Column 6, arXiv:1807.06209.
† B.M.S. Hansen et al., “The White Dwarf Cooling Sequence of the Globu-

lar Cluster Messier 4,” Astrophysical Journal Letters, vol. 574, p. L155 (2002),
http://arXiv.org/abs/astro-ph/0205087.
‡ L.M. Krauss and B. Chaboyer, “Age Estimates of Globular Clusters in the

Milky Way: Constraints on Cosmology,” Science, vol. 299, pp. 65-70 (2003), avail-
able with MIT certificates at http://www.sciencemag.org.libproxy.mit.edu/content/
299/5603/65.abstract or for purchase at http://www.sciencemag.org/content/299/5603/
65.abstract

https://arxiv.org/abs/1807.06209
http://arXiv.org/abs/astro-ph/0205087
http://www.sciencemag.org.libproxy.mit.edu/content/299/5603/65.abstract
http://www.sciencemag.org.libproxy.mit.edu/content/299/5603/65.abstract
http://www.sciencemag.org/content/299/5603/65.abstract
http://www.sciencemag.org/content/299/5603/65.abstract
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(That is, the stars are at least 12.6 - 2.2 = 10.4 billion years old, and could not have
formed until the universe was already 0.8 billion years old.)

With either of these estimates for the age of the oldest stars, however, the age
of the universe is inconsistent with the measured value of the Hubble expansion rate
and the assumption of a flat, matter-dominated universe. We will see later in these
lecture notes that the age calculation gives a larger answer if we assume an open universe
(Ω ≡ ρ/ρc < 1), but inflationary cosmology predicts that Ω should be very close to 1,
and starting with the first BOOMERANG long duration balloon experiment of 1997,*
measurements of the fluctuations in the CMB have indicated a nearly flat universe. The
CMB measurements now imply that Ω = 1 to high accuracy. Combining their own data
with results of other experiments, the Planck team† concluded that Ω = 0.9993± 0.0037.
We will see in Lecture Notes 7, however, that the age discrepancy problem is completely
resolved by the inclusion of dark energy. With about 70% of the mass density in the
form of dark energy, H0 = 67.7 km-s−1-Mpc−1 is consistent with an age of 13.79± 0.02

billion years, which is our current best estimate‡ for the age of the universe. Since
the age estimates are not consistent if we assume a matter-dominated flat universe, the
age calculations help to support the proposition that our universe is dominated by dark
energy, which we will discuss in detail in Lecture Notes 7.

THE BIG BANG SINGULARITY:

This mathematical model of the universe starts from a configuration with a(t) = 0,
which corresponds to infinite density. From Eq. (4.3) we see that the initial value of the
Hubble expansion rate is also infinite. We will see shortly that these infinities are not
peculiarities of the flat universe model, but occur also in the models for either a closed
or open universe. This instant of infinite density is called a singularity.

One should realize, however, that there is no reason to believe that the equations
which we have used are valid in the vicinity of this singularity. Thus, although our
mathematical models of the universe certainly begin with a singularity, it is an open
question whether the universe actually began with a singularity. If we use our equations
to follow the history of the universe further and further into the past, the universe becomes
denser and denser without limit. At some point one encounters densities that are so far
beyond our experience that the equations are no longer to be trusted. We will discuss
later in the course where this point may occur, but for now I just want to make it clear
that the singularity should not be considered a reliable consequence of the theory.

* P. D. Mauskopf et al., “Measurement of a peak in the cosmic microwave background
power spectrum from the North American test flight of BOOMERANG,” Astrophysical
Journal Letters, vol. 536, pp. L59–L62 (2000), http://arXiv.org/abs/astro-ph/9911444.
† N. Aghanim et al. (Planck Collaboration), cited above, Table 4, Column 4.
‡ N. Aghanim et al. (Planck Collaboration), cited above, Table 2, Column 6.

http://arXiv.org/abs/astro-ph/9911444
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
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THE HORIZON DISTANCE:

Since the age of the universe in the big bang model is finite, it follows that there
is a theoretical upper limit to how far we can see. Since light travels at a finite speed,
there will be particles in the universe that are so far away that light emitted from these
particles will not yet have reached us. The present distance of the furthest particles from
which light has had time to reach us is called the horizon distance. If the universe were
static and had age t, then the horizon distance would be simply ct. In the real universe,
however, everything is constantly in motion, and the value of the horizon distance has to
be calculated.

The calculation of the horizon distance can be done most easily by using comoving
coordinates. The speed of light rays in a comoving coordinate system was given in
Eq. (2.8) as

dx

dt
=

c

a(t)
. (4.5)

(Recall that this formula is based on the statement that the speed of light in meters per
second is constant, but the scale factor a(t) is needed to convert from meters per second
to notches per second.) One can then calculate the coordinate horizon distance (i.e., the
horizon distance in “notches”) by calculating the distance which light rays could travel
between time zero and some arbitrary final time t. By integrating Eq. (4.5), one sees that

`c,horizon(t) =

∫ t

0

c

a(t′)
dt′ . (4.6)

The physical horizon distance at time t is then given by

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (4.7)

For the special case of a flat, matter-dominated universe, one can use Eq. (4.1) to obtain

`p,horizon(t) = bt2/3
∫ t

0

c

bt′2/3
dt′ . (4.8)

Carrying out the integration, the physical horizon distance for a flat matter-dominated
universe is found to be

`p,horizon(t) = 3ct . (4.9)

The horizon distance can also be expressed in terms of the Hubble expansion rate,
by using Eq. (4.4):

`p,horizon(t) = 2cH−1 . (4.10)
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Taking H0 = 67.7 km-s−1-Mpc−1, the horizon distance today, under the assumption of
a flat matter-dominated universe, is found to be about 29 billion light-years.

The factor of 3 on the right-hand side of Eq. (4.9) implies that the horizon distance
is three times larger than it would be in a static universe, and hence it is significantly
larger than most of us would probably guess. The reason, of course, is that the horizon
distance refers to the present distance of the most distant matter that can in principle
be seen. However, the light that we receive from distant sources was emitted long ago,
and the present distance is large because the matter has been moving away from us ever
since. In the limiting case of matter exactly at the horizon, the light that we receive
today left the object at t = 0, at the instant of the big bang.

You might wonder why light from every object did not reach us immediately, since the
scale factor a(t) was zero at t = 0, so the initial distance between any two objects was zero.
To be honest, you are pretty safe in believing whatever you like about what happens at
the initial singularity. The classical description certainly breaks down as the mass density
approaches infinity, and there does not yet exist a satisfactory quantum description. So,
if you want to believe that everything could communicate with everything else at the
instant of the singularity, nobody whom I know could prove that you are wrong. But
nobody whom I know could prove that you are right, either. If one ignores the possibility
of communication at the singularity, however, it is then a well-defined question to ask
how far light signals can travel once the classical description becomes valid. As t → 0
the scale factor a(t) approaches zero, but its time derivative ȧ(t) approaches infinity. If
we think about some object at coordinate distance `c from us, at early times its physical
distance a(t)`c was arbitrarily small, but its velocity of recession ȧ(t)`c was arbitrarily
large. If such an object emitted a light pulse in our direction at some very early time
t = ε > 0, even though the light pulse would have traveled toward us at the speed of
light, the expansion of the universe was so fast that the distance between us and the light
pulse would have initially increased with time. The coordinate distance that the light
pulse could travel between then and now is at most equal to `c,horizon, as given Eq. (4.6),
so the pulse could reach us by now only if the present distance to the object is less than
the horizon distance as given by Eq. (4.7).

EVOLUTION OF A CLOSED UNIVERSE:

The time evolution equations are easiest to solve for the case of a flat (k = 0)
universe, but the equations for a closed or open universe are also soluble. We will first
consider the closed universe, for which k > 0, E < 0, and Ω > 1.

From Lecture Notes 3, we write the Friedmann equation as(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (4.11)
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where the mass density ρ can be written as

ρ(t) =

[
a(ti)

a(t)

]3
ρ(ti) . (4.12)

(The above equation is a slight generalization of Eq. (3.23), ρ(t) = ρi/a
3(t). Eq. (3.23) was

derived under the assumption that a(ti) = 1, while Eq. (4.12) makes no such requirement.)
Here we will use Eq. (4.12) to conclude that the quantity ρ(t)a3(t) is independent of time.

To obtain the desired solution in an economical way, it is useful to identify from the
beginning the quantities of physical interest. Note that a is measured in units of, for
example, meters per notch, while k is measured in units of notch−2. Thus the quantity
a/
√
k has units of physical length (meters, for example), and is therefore independent of

the definition of the notch. We will therefore choose

ã(t) ≡ a(t)√
k

(4.13)

as the variable to use in our solution of the differential equation. Similarly we will use

t̃ ≡ ct , (4.14)

rather than t, so that all the spacetime variables have units of length.

Multiplying the Friedmann equation (4.11) by a2/(kc2), it can be rewritten as

1

kc2

(
da

dt

)2

=
8π

3

Gρa2

kc2
− 1

=
8π

3

Gρa3

k3/2c2

√
k

a
− 1 .

(4.15)

In the second line the factors have been arranged so that we can rewrite it as(
dã

dt̃

)2

=
2α

ã
− 1 , (4.16)

where

α ≡ 4π

3

Gρã3

c2
. (4.17)

Note that the parameter α also has the units of length. While the above expression for
α contains the product ρ(t)ã3(t), Eq. (4.12) guarantees that this quantity is independent
of time, so α is a constant. Eq. (4.16) can be solved formally by rewriting it as

dt̃ =
dã√
2α
ã − 1

=
ã dã√

2αã− ã2
(4.18)
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and then integrating both sides. One could use indefinite integrals, as we did for the
k = 0 case in Eq. (3.37). Using indefinite integrals, the arbitrary constant of integration
would become an arbitrary constant in the solution to the equation. We found, however,
that the arbitrary constant could be eliminated by choosing the zero of time so that
a(t) = 0 at t = 0. Here, mainly for the purpose of demonstrating an alternative method,
I will use definite integrals. In this method the arbitrary constant in the solution will be
fixed by the specification of the limits of integration. Following the standard convention,
I will again choose the zero of time to be the time at which the scale factor is equal to
zero. Using a subscript f to denote an arbitrary final time, one has

t̃f =

∫ t̃f

0

dt̃ =

∫ ãf

0

ã dã√
2αã− ã2

, (4.19)

where ãf ≡ ã(t̃f ). The subscripts f will be dropped when the problem is finished, but for
now it is convenient to use them to distinguish the limits of integration from the variables
of integration.

The only remaining step is to carry out the integration shown in Eq. (4.19). Com-
pleting the square in the denominator, and then replacing the variable of integration
by

x ≡ ã− α , (4.20)

one finds

t̃f =

∫ ãf

0

ã dã√
α2 − (ã− α)

2

=

∫ ãf−α

−α

(x+ α) dx√
α2 − x2

.

(4.21)

The integral can now be simplified by the trigonometric substitution

x = −α cos θ , (4.22)

which leads to

t̃f = α

∫ θf

0

(1− cos θ)dθ = α(θf − sin θf ) . (4.23)

Since θf denotes the final value of θ, we can combine Eqs. (4.20) and (4.22) to find
xf = ãf − α = −α cos θf , so

ãf = α(1− cos θf ) . (4.24)

Dropping the subscript f and recalling the definitions (4.13) and (4.14), the two
equations above provide a solution to our problem:
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ct = α(θ − sin θ) ,

a√
k

= α(1− cos θ) .

(4.25a)

(4.25b)

These two equations provide a parametric description of the function a(t). That
is, Eq. (4.25a) determines in principle the function θ(t), and then Eq. (4.25b) defines
the function a

(
θ(t)

)
. (There is, however, no explicit expression for θ(t), so the function

a(t) cannot be constructed explicitly.) Some of you may recognize these equations as the
equations for a cycloid. The curve which they trace can be generated by imagining a
graph of a/

√
k vs. ct, with a disk of radius α that rolls along the t-axis, as shown below.

As the disk rolls, the point P traces the graph of a/
√
k vs. ct:

Figure 4.1: Evolution of a closed universe. The figure shows a graph
of a/

√
k vs. ct for a closed matter-dominated universe. If one imagines a

circle rolling on the ct axis, a point on the circle traces out a cycloid, which
is exactly the equation for a/

√
k for a closed universe. The insert at the

upper right includes labels for various distances, showing the connection
with Eq. (4.25).

The relation between Eqs. (4.25) and the rolling disk can be seen in the insert at the
top right: after the disk has rolled through an angle θ, the horizontal component of P is
given by αθ − α sin θ, and the vertical component is given by α− α cos θ.
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The model for the closed universe reaches a maximum scale factor when θ = π, which
corresponds to a time ct = πα. The corresponding value of a is given by

amax√
k

= 2α . (4.26)

By that point the pull of gravity has overcome the inertia of the expansion, and the
universe begins to contract. The scale factor during the contracting phase reverses the
behavior it had during the expansion phase, and the universe ends in a “big crunch”.
The total lifetime of this universe is then

ttotal =
2πα

c
=
πamax

c
√
k

. (4.27)

The angle θ is sometimes called the “development angle,” because it describes the
stage of development of the universe. The universe begins at θ = 0, reaches its maximum
expansion at θ = π, and then is terminated by a big crunch at θ = 2π.

Eqs. (4.25) contain the two parameters α and k, which might lead one to believe
that there is a two-parameter family of closed universes. We must remember, however,
that these equations still allow us the freedom to define the notch, so the numerical value
of k is physically irrelevant. Many books, in fact, define k to always have the value +1
for a closed universe. The parameter α, on the other hand, is physically meaningful, and
is related to the total lifetime of the closed universe. (When general relativity effects
are described in Lecture Notes 5, we will learn that a closed universe actually has a
finite size, and that the maximum size is determined by α.) Thus there is really only a
one-parameter class of solutions.

THE AGE OF A CLOSED UNIVERSE:

The formula for the age of a closed universe can be obtained from the formulas in
the previous section, but we have to do a little work. Eqs. (4.25) tell how to express the
age in terms of α and θ, but this is not the result we want. We would prefer to relate α
and θ to other quantities that are in principle measurable. Since we need to determine
two variables, α and θ, we will have to imagine measuring two physical quantities. These
two measurable quantities can be taken to be the Hubble expansion rate H and the mass
density parameter Ω ≡ ρ/ρc.

Our goal, then, is to express all the quantities related to the closed universe model
in terms of H and Ω. To start, the mass density ρ can be rewritten as Ωρc, where
ρc = 3H2/8πG (see Eq. (3.33)). So

ρ =
3H2Ω

8πG
, (4.28)
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or equivalently
8π

3
Gρ = H2Ω . (4.29)

Recalling that H = ȧ/a (see Eq. (2.7)), the above formula can be substituted into the
Friedmann equation (4.11), yielding

H2 = H2Ω− kc2

a2
, (4.30)

which can then be solved for a2 to give

ã2 =
a2

k
=

c2

H2(Ω− 1)
. (4.31)

If we want to get our signs right for the entire evolution of the closed universe, we need to
be careful. Note that Eq. (4.31) does not determine the sign of ã, since it only specifies
the value of ã2. The scale factor is by definition positive, however, and for the case under
consideration k > 0. We adopt the standard convention that the square root of a positive
number is positive, so

√
k > 0. Thus, the definition ã ≡ a/

√
k implies that ã > 0, so

Eq. (4.31) implies that

ã =
a√
k

=
c

|H|
√

Ω− 1
. (4.32)

We write Eq. (4.32) with absolute value indicators aroundH, because during the contract-
ing phase H is negative, while we know that only the positive square root of Eq. (4.31)
is physically relevant.

We are now ready to evaluate α, using the definition (4.17). Using Eqs. (4.28) and
(4.32) to replace ρ and ã, we find

α =
c

2|H|
Ω

(Ω− 1)3/2
. (4.33)

Recall that α has direct physical meaning — if our universe is closed, then the total
lifetime of the universe (from big bang to big crunch) would be given by 2πα/c.

The value of θ can now be found from Eq. (4.25b), using Eq. (4.32) to replace a/
√
k

on the left-hand side, and Eq. (4.33) to replace α on the right-hand side. After these
substitutions, Eq. (4.25b) becomes

c

|H|
√

Ω− 1
=

c

2|H|
Ω

(Ω− 1)3/2
(1− cos θ) , (4.34)

which can be solved for either cos θ or for Ω:

cos θ =
2− Ω

Ω
, (4.35)
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Ω =
2

1 + cos θ
. (4.36)

Using

sin θ = ±
√

1− cos2 θ = ±2
√

Ω− 1

Ω
, (4.37)

Eq. (4.25a) can now be rewritten to obtain the desired formula for the age of the universe:

t =
Ω

2|H|(Ω− 1)3/2

{
arcsin

(
±2
√

Ω− 1

Ω

)
∓ 2
√

Ω− 1

Ω

}
(for a closed universe),

(4.38)

where the sign choices correspond to Eq. (4.37) (i.e., if the upper sign is used in Eq. (4.37),
then both upper signs should be used in Eq. (4.38).) Both the square root and the inverse
sine function are multibranched functions, so the evaluation of Eq. (4.38) requires some
additional information. It is easy to see which branch to use, however, if one remembers
that Eq. (4.38) is a rewriting of Eq. (4.25a), and that in Eq. (4.25a) the variable θ runs
monotonically from 0 to 2π over the lifespan of the closed universe.

To describe the branches in detail, it is necessary to divide the full cycle, with θ
varying from 0 to 2π, into quadrants. The first quadrant is from θ = 0 to θ = π/2, where
we see from Eq. (4.36) that θ = π/2 corresponds to Ω = 2. Thus, the first quadrant
corresponds to the beginning of the expanding phase, with 1 ≤ Ω ≤ 2. For this quadrant
sin θ > 0, so we use the upper signs in Eq. (4.38), and the inverse sine is evaluated in
the range 0 to π/2. The other quadrants are understood in the same way, producing the
following table of rules:

Quadrant Phase Ω Sign Choice sin−1()

1 Expanding 1 to 2 Upper 0 to π
2

2 Expanding 2 to ∞ Upper π
2 to π

3 Contracting ∞ to 2 Lower π to 3π
2

4 Contracting 2 to 1 Lower 3π
2 to 2π

Our universe is not currently matter-dominated, but it could be just barely closed. If
we considered the hypothesis that our universe was matter-dominated, it would certainly
be in the expanding phase, with Ω < 2, and so it would be in the first quadrant. That
means that the age would be given by Eq. (4.38), using the upper signs, and evaluating
the inverse sine function in the range of 0 to π/2.
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EVOLUTION OF AN OPEN UNIVERSE:

The evolution of an open universe can be calculated in a very similar way, except
that one must use hyperbolic trigonometric substitutions in order to carry out the crucial
integral. Fortunately, none of the complications with multibranched functions will occur
in this case. For the open universe k < 0, E > 0, and Ω < 1. We will define κ ≡ −k to
avoid the inconvenience of working with a negative quantity, and we will define

ã(t) ≡ a(t)√
κ

(4.39)

instead of ã = a(t)/
√
k. Eq. (4.16) is then replaced by(

dã

dt̃

)2

=
2α

ã
+ 1 , (4.40)

while Eq. (4.17),

α ≡ 4π

3

Gρã3

c2
,

continues to be valid, although the meaning of ã has changed. Eqs. (4.19) and (4.21) are
then replaced by

t̃f =

∫ ãf

0

ã dã√
2αã+ ã2

=

∫ ãf

0

ã dã√
(ã+ α)

2 − α2

=

∫ ãf+α

α

(x− α) dx√
x2 − α2

.

(4.41)

In this case one uses the substitution

x = α cosh θ , (4.42)

and one obtains the result

ct = α(sinh θ − θ) ,
a√
κ

= α(cosh θ − 1) .

(4.43a)

(4.43b)
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THE AGE OF AN OPEN UNIVERSE:

The methods are again identical to the ones used previously, so I will just state the

results. Eqs. (4.35), (4.36) and (4.37) are replaced by

Ω =
2

1 + cosh θ
, cosh θ =

2− Ω

Ω
(4.44)

and

sinh θ =
√

cosh2 θ − 1 =
2
√

1− Ω

Ω
, (4.45)

and the final result for the age of the universe becomes

t =
Ω

2H(1− Ω)3/2

{
2
√

1− Ω

Ω
− sinh−1

(
2
√

1− Ω

Ω

)}
(for an open universe).

(4.46)

Below is a graph of Ht versus Ω, using Eqs. (4.38) and (4.46). The graph shows that

the curve is actually continuous at Ω = 1, even though the expressions (4.38) and (4.46)

look rather different. In fact, these two expressions are really not so different. Although

it is not obvious, the two expressions are different ways of writing the same analytic

function. You can verify this by using the usual techniques to evaluate square roots of

negative numbers, and the trigonometric and hypertrigonometric functions of imaginary

arguments.

To summarize, the age the universe can be expressed as a function of H and Ω as

|H| t =



Ω

2(1− Ω)3/2

[
2
√

1− Ω

Ω
− sinh−1

(
2
√

1− Ω

Ω

)]
if Ω < 1

2/3 if Ω = 1

Ω

2(Ω− 1)3/2

[
sin−1

(
±2
√

Ω− 1

Ω

)
∓ 2
√

Ω− 1

Ω

]
if Ω > 1

(4.47)

Graphically,
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Figure 4.2: The age of a matter-dominated universe, expressed as Ht
(where t is the age and H is the Hubble expansion rate), as a function of
Ω. The curve describes all three cases of an open (Ω < 1), flat (Ω = 1),
and closed (Ω > 1) universe.

THE EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

The following graph shows the evolution of the scale factor for all three cases: open,
closed, or flat. The graphs were constructed using Eqs. (4.1) for the flat case, (4.43) for
the open case, and (4.25) for the closed case. The parametric equations are plotted by
choosing a finely spaced grid of values for θ, using the formulas to determine t and a
for each value of θ. Since the only parameter, α, appears merely as an overall factor, a
graph that is valid for all values of α can be obtained by plotting the dimensionless ratios
a/(α

√
|k|) and ct/α:
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Figure 4.3: The evolution of a matter-dominated universe. Closed and
open universes can be characterized by a single parameter α, defined by
Eq. (4.17). With the scalings shown on the axis labels, the evolution of a
matter-dominated universe is described in all cases by the curves shown in
this graph.

Although the graph shows all three cases, it must be remembered that it is still restricted
by the assumption that the universe is matter-dominated — that is, the mass density is
dominated by nonrelativistic matter, for which pressure forces are negligible.
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Lecture Notes 5

INTRODUCTION TO NON-EUCLIDEAN SPACES

INTRODUCTION:

The history of non-Euclidean geometry is a fascinating subject, which is described
very well in the introductory chapter of Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity by Steven Weinberg. Here I would like
to summarize the important points. Although historical in its organization, this section
describes some essential mathematics and should be read carefully.

Euclid showed in his Elements how geometry could be deduced from a few definitions,
axioms, and postulates. One of Euclid’s assumptions, however, seemed to generations of
mathematicians to be somewhat less obvious than the others. This assumption, known
as Euclid’s fifth postulate, was stated by Euclid as follows:

“If a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines if produced
indefinitely meet on that side on which the angles are less than two right angles.”
[This statement is interpreted to imply that the two straight lines will never meet
if extended on the opposite side.]

Figure 5.1: Euclid’s fifth postulate.

Many mathematicians attempted to prove this postulate from the other assumptions,
but all of these attempts ended in failure. It was discovered, however, that the fifth
postulate could be replaced by any of a number of equivalent statements, such as:
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Figure 5.2: Statements equivalent to the fifth postulate.

(a) “If a straight line intersects one of two parallels (i.e, lines which do not intersect
however far they are extended), it will intersect the other also.”

(b) “There is one and only one line that passes through any given point and is parallel
to a given line.”

(c) “Given any figure there exists a figure, similar* to it, of any size.”

(d) “There is a triangle in which the sum of the three angles is equal to two right angles
(i.e., 180◦).”

Given Euclid’s other assumptions, each of the above statements is equivalent to the fifth
postulate.

The attitude of mathematicians toward the fifth postulate underwent a marked
change during the eighteenth century, when mathematicians began to consider the possi-
bility of abandoning the fifth postulate. In 1733 the Jesuit Giovanni Geralamo Saccheri
(1667–1733) published a study of what geometry would be like if the postulate were
false. He, however, was apparently convinced that the fifth postulate must be true, and
he pursued this work because he hoped to discover an inconsistency — he didn’t.

Carl Friedrich Gauss (1777-1855) seems to have been the first to really take seriously
the possibility that the fifth postulate could be false. He, János Bolyai (an Austrian
army officer, 1802-1860), and Nikolai Ivanovich Lobachevsky (a Russian mathematician,
1793-1856) independently discovered and explored a geometry which in modern terms is
described as a two-dimensional space of constant negative curvature. The space is infinite

* Two polygons are similar if their corresponding angles are equal, and their corre-
sponding sides are proportional.
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Figure 5.3: The frontispiece of Giovanni Geralamo Saccheri’s 1733 book titled Euclides
ab omni naevo vindicatus (Euclid Freed of Every Flaw). Saccheri pursued the conse-
quences of assuming that the fifth postulate was false, hoping to find a contradiction.

in extent, is homogeneous and isotropic, and satisfies all of Euclid’s assumptions except
for the fifth postulate. In this space every one of the statements of the fifth postulate
and its equivalents listed above are false — through a given point there can be drawn
infinitely many lines parallel to a given line; no figures of different size are similar; and
the sum of the angles of any triangle is less than 180◦.

The surface of a sphere, it should be pointed out, satisfies all the postulates of Euclid
except for the fifth and the second, which states that “Any straight line segment can be
extended indefinitely in a straight line.” From a modern point of view the surface of a
sphere provides a perfectly interesting example of a non-Euclidean geometry. Historically,
however, this example was not taken very seriously, apparently because it seemed too
simple. The great circles would be the objects that play the role of straight lines, but
since any two great circles intersect, there could be no such thing as parallel lines.

Despite the work of Gauss, Bolyai, and Lobachevsky, it was still not clear that their
non-Euclidean geometry was logically consistent. This problem was not solved until 1870,
when Felix Klein (1849-1925) developed an “analytic” description of this geometry. In
Klein’s description, a “point” of the Gauss-Bolyai-Lobachevsky (G-B-L) geometry can
be described by two real number coordinates (x,y), with the restriction

x2 + y2 < 1 . (5.1)
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Figure 5.4: Carl Friedrich Gauss, János Bolyai, and Nikolai Ivanovich Lobachevsky indepen-
dently developed the first example of a mathematical theory in which Euclid’s fifth postulate is
false, now known as the Gauss–Bolyai–Lobachevsky geometry. Gauss (1777–1855) was the son
of poor working-class parents in Germany, but by the time he was 15 his mathematical talents
were noticed by the Duke of Brunswick, who sent Gauss to the Collegium Carolinum and then
the University of Göttingen. Gauss remained at Göttingen for the rest of his life, becoming Pro-
fessor of Astronomy and director of the astronomical observatory in 1807. His students included
Richard Dedekind, Bernhard Riemann, Peter Gustav Lejeune Dirichlet, Gustav Kirchhoff, Au-
gust Ferdinand Möbius, and Friedrich Bessel. Bolyai (1802–1860) was the son of Farkas Bolyai, a
teacher of mathematics, physics, and chemistry at the Calvinist College in Marosvásárhely, Hun-
gary (now Tirgu-Mures, Romania). Although his father was well-educated, he was nonetheless
not well paid, so János attended Marosvásárhely College and later studied military engineering
at the Academy of Engineering at Vienna, because that is what they could afford. He then en-
tered the army engineering corps, where he served for 11 years, during which time he carried out
his now-famous investigation of non-Euclidean geometry. The work was published in 1831 as an
appendix in a book written by his father. Bolyai resigned from the army in 1833 due mainly
to health problems, and lived the rest of his life in relative poverty, dying at the age of 57 of
pneumonia. The Romanian postage stamp shown here honored the 100th anniversary of Bolyai’s
death; the picture was apparently fabricated, as no authentic picture of Bolyai is known to exist.
Lobachevsky (1792–1856) was the son of Polish parents living in Russia. His father was a clerk
in a land-surveying office, who died when Lobachevsky was only seven. His mother relocated the
family to Kazan, Russia, where Lobachevsky attended Kazan Gymnasium and later was given
a scholarship to Kazan University, where one of his professors was Martin Bartels, who was a
teacher and friend of Gauss. Lobachevsky remained at Kazan University for the rest of career,
becoming rector of the university in 1827. His work on non-Euclidean geometry was published in
the Kazan Messenger in 1829, but was rejected for publication by the St. Petersburg Academy
of Sciences. Lobachevsky was asked to retire in 1846, and after that his health and financial
situation deteriorated, he became blind, and his favorite eldest son died. Lobachevsky himself
died before the importance of his work in mathematics was appreciated.
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The distance d(1, 2) between two points (x1, y1) and (x2, y2) is then defined to be

cosh

[
d(1, 2)

a

]
=

1− x1x2 − y1y2√
1− x21 − y21

√
1− x22 − y22

, (5.2)

where a is a fundamental length which sets a scale for the geometry. Note that the space
is infinite despite the coordinate restriction of Eq. (5.1), because the distance approaches
infinity as either x21 + y21 → 1 or x22 + y22 → 1. Klein showed that with this definition
of point and distance the model satisfies all of the assumptions of the G-B-L geometry.
Thus, assuming the consistency of the real number system, the consistency of the G-B-L
geometry was established. In addition, this work reinforced the important idea of analytic
geometry which had been introduced by Descartes. It has since proven to be very useful
to describe a geometry not by listing axioms, but instead by giving an explicit description
in terms of a coordinate system and distance function.

Gauss went on to develop two very central ideas in non-Euclidean geometry. The
first is the distinction between the “inner” and “outer” properties of a surface. The inner
properties of a surface are those distance relationships that can be measured within the
surface itself, such as in Eq. (5.2). The outer properties refer to the way in which a space
might be embedded in a higher dimensional space. For example, the surface of a sphere is
a two-dimensional space which we visualize by embedding in a three-dimensional space.
Gauss emphasized that the distance relationships within the two-dimensional surface
itself provide a complete mathematical system which can be studied independently of
any assumptions about the embedding in the three-dimensional space. Gauss wrote in
1827 that it is the inner properties of the surface that are “most worthy of being diligently
explored by geometers.” Note that the G-B-L geometry cannot be fully embedded in a
three-dimensional Euclidean space, although finite patches of it can be so embedded. To
describe the whole space, it is necessary to describe it in terms of its inner properties.

Gauss’s second central idea had to do with the form of the distance function d(1, 2).
It turns out that if one allows this function to have any form, then the class of geometries
is so unconstrained that nothing very interesting results. Gauss realized first that one
need not specify d(1, 2) for arbitrary points 1 and 2. It is sufficient to consider only
infinitesimal line segments. Such a line segment can be described as extending from the
point (x, y) to (x+ dx, y + dy). The length of a finite segment of a curve is then defined
by summing up (integrating) the lengths of the infinitesimal segments that make it up.
The distance d(1, 2) between two arbitrary points can then be defined as the length of
the shortest curve which joins the two points. The concept of a line is replaced by a
geodesic, defined to be any curve that is the shortest path between its endpoints. More
precisely, a geodesic is not necessarily the true minimum of the path length — it is only
necessary that the path is stationary, in the sense that the first derivative with respect
to any variation of the path between the two endpoints must vanish. The path length
might then be a minimum, a maximum, or a saddle point.
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For the length of the infinitesimal line segment from (x, y) to (x+ dx, y+ dy), Gauss

realized that the interesting case is to restrict one’s attention to functions for which the

squared segment length ds2 is quadratic in dx and dy (i.e., functions for which each term

contains two powers of dx and/or dy). Such functions can be written as

ds2 = gxxdx2 + gxydxdy + gyxdy dx+ gyydy2 , (5.3)

where gxx, gxy, gyx, and gyy are functions of position (x, y) and are together called the

metric of the space. (Since gxy and gyx both multiply dx dy, only their sum is relevant. By

convention one sets gxy = gyx.) Gauss showed that the assumption that ds2 is quadratic

is equivalent to the assumption that in any infinitesimal region it is possible to choose a

coordinate system (x′, y′) in which the distance relation is Euclidean: ds2 = dx′2 + dy′2.

Today spaces with a metric of this form are generally called either metric spaces or

Riemannian spaces.

In Euclidean space one can use any coordinate system one wants, although one

usually prefers a Cartesian system in which the metric has the form:

ds2 = dx2 + dy2 . (5.4)

Any two systems with metrics of this form are related to each other by a translation

and/or a rotation. For some purposes, however, it is convenient to use polar coordinates

r and θ, for which the metric is given by

ds2 = dr2 + r2dθ2 . (5.5)

Thus, the mere fact that the metric does not have the Cartesian form of Eq. (5.4) does

not imply that the underlying space is non-Euclidean — one might simply be using a

non-Cartesian coordinate system. It is therefore useful to have some way of describing

the inner curvature of a space in a way which is not confused by the choice of a coordinate

system. Such a method was developed for two-dimensional spaces by Gauss, who showed

that the underlying space is Euclidean if and only if a somewhat complicated expression

involving derivatives of the metric is equal to zero. The extension to more than two

dimensions was carried out by Georg Friedrich Bernhard Riemann (1826-1866). The

details of the Gaussian curvature and the Riemann curvature tensor are beyond the level

of this discussion.
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GENERAL RELATIVITY:

As I have mentioned before, Einstein’s theory of general relativity is nothing more
nor less than a theory of gravity. When Einstein invented the special theory of relativity
in 1905, he realized immediately that it was inconsistent with Newton’s theory of gravity.
The inconsistency has nothing in particular to do with the inverse square nature of
the force law, and it cannot be remedied by simply modifying the way that the force
depends on the distance. Rather, the inconsistency is due to the fact that Newton’s law
of gravity assumes that the force between two bodies depends instantaneously on the
distance between them. That is, to determine the force due to body B acting on body A
at time t, one must merely know the position of the two bodies at time t. However, as we
discussed in Lecture Notes 1, special relativity implies that the synchronization of clocks
depends on the velocity of the observer. Thus, two observers who are moving relative to
each other will not agree on what it means to measure the positions of A and B at the
same time, and so a physically meaningful quantity like a force cannot be determined by
these two positions. If special relativity is correct, then Newton’s law of gravity must be
modified.

The idea of an action-at-a-distance theory is not completely ruled out by special
relativity, but it is very difficult to formulate such a theory. The electromagnetic force
of one charged particle acting on another can be expressed by an action-at-a-distance
law, but it is rather complicated. (The force law is stated, for example, in The Feynman
Lectures on Physics, Volume 1, by R.P. Feynman, R.B. Leighton, and M. Sands.) The
force on charge A at time t does not depend on the position of charge B at time t,
but instead depends on the position (and velocity, and acceleration!) of charge B at a
retarded time t′. The time t′ is determined by the rule that a light pulse (moving at
speed c) can just barely travel from B to A in the time interval from t′ to t, as illustrated
in the following diagram:

Figure 5.5: Definition of the retarded time t′. The electromagnetic force on particle
A at time t, due to particle B, can be expressed in terms of the position, velocity, and
acceleration of charge B at the retarded time t′.
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Two different observers will agree when this relationship is met, since they agree

on what it means for a trajectory to move at the speed of light. However, the two

observers will measure different values for the positions, velocities, and accelerations, and

it requires a very complicated force law such that both observers will conclude that the

law is satisfied.

The simplest way to formulate electromagnetic theory is to avoid action-at-a-distance

forces, but instead to use the concept of a field. The electric and magnetic fields are each

defined at all points in space, and a charged particle interacts only with the fields at the

location of the particle. The evolution of the fields is governed by Maxwell’s equations.

These equations allow information about the changing position of a particle to propagate

in the form of waves which travel at the speed of light.

General relativity is also a theory of fields, similar in type to the Maxwell theory of

electromagnetism. In the case of general relativity there is no known action-at-a-distance

formalism. The “fields” which are involved in general relativity are of course not the

electric and magnetic fields of the Maxwell theory. The fields of general relativity are in

fact the metric functions defined earlier. Space and time must be considered together, and

it is the metric functions on this “spacetime” which are the fields that general relativity

uses to describe gravitation. We will see later that in this curved (i.e., non-Euclidean)

spacetime, a freely falling particle is assumed to travel along a geodesic. The attractive

effect of gravity then appears simply as a distortion of spacetime.

THE SURFACE OF A SPHERE:

As mentioned above, the surface of a sphere embedded in a three-dimensional Eu-

clidean space is a perfectly good example of a non-Euclidean geometry. In order to

develop some of the techniques of non-Euclidean geometry, we begin by studying this

familiar system. Since the three-dimensional embedding space is Euclidean, we can use

our knowledge of Euclidean geometry to learn about the non-Euclidean two-dimensional

geometry of the surface of the sphere. Beware, however, that not all two-dimensional

curved surfaces can be embedded in a three-dimensional Euclidean space.

The surface of the sphere can be described by using Cartesian coordinates (x, y, z)
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in the three-dimensional space, in which case the surface is given by:

Figure 5.6: A sphere in Cartesian
coordinates.

x2 + y2 + z2 = R2 , (5.6)

where R is the radius of the sphere. We now want to take seriously the notion that the
two-dimensional space of the surface defines a two-dimensional geometry with “inner”
properties that are independent of the existence of the third dimension. We take the
point of view that the third dimension has been introduced only as an aid in visualizing
the two-dimensional surface. This third dimension can of course be useful, because in
the three-dimensional picture the properties of homogeneity and isotropy are obvious.
(Recall here that homogeneity and isotropy refer to properties of the two-dimensional
space. Homogeneity means that all points on the surface of the sphere are equivalent.
Isotropy means that if a two-dimensional creature living in the two-dimensional surface
were to look in all directions within the two-dimensional surface, he would see the same
thing in all directions.)

In order to describe the two-dimensional world without reference to the third dimen-
sion, it is useful to introduce a two-dimensional coordinate system. The most natural
choice is to use the usual angular variables θ and φ, as shown in Fig. 5.7.

From the diagram we can see that x, y, and z can be expressed as

x = R sin θ cosφ

y = R sin θ sinφ

z = R cos θ ,

(5.7)

where θ runs from 0 to π and φ runs from 0 to 2π.
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Figure 5.7: Spherical polar coordinates for the surfaces of a sphere.

Figure 5.8: Variation of θ in spherical polar coordinates: ds = Rdθ.

To describe the inner properties of this two-dimensional space, we must write down
an expression for the metric. That is, we need an expression for the distance ds between
two points on the surface labelled by (θ, φ) and (θ + dθ, φ + dφ). It is helpful to think
about varying θ and φ one at a time. As θ is increased, the point moves a distance R dθ
toward the south (where I am using the positive z-axis to define a North pole), as can be
seen in Fig. 5.8.

When φ is increased, the point moves toward the east, tracing out a circle at constant
latitude. The radius of the circle is R sin θ, and so the distance moved is given by
R sin θ dφ, as shown in the Fig. 5.9.
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Figure 5.9: Variation of φ in spherical polar coordinates: ds = R sin θ dφ.

Since these two displacements are in orthogonal directions, the total distance is given
by the Pythagorean theorem:

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
. (5.8)

Eq. (5.8) describes the metric of the two-dimensional space.

If one wishes to avoid the pictures, one can also derive Eq. (5.8) directly from
Eqs. (5.7), by writing

dx =
∂x

∂θ
dθ +

∂x

∂φ
dφ = R cos θ cosφ dθ −R sin θ sinφ dφ ,

dy =
∂y

∂θ
dθ +

∂y

∂φ
dφ = R cos θ sinφ dθ +R sin θ cosφ dφ ,

and

dz =
∂z

∂θ
dθ +

∂z

∂φ
dφ = −R sin θ dθ . (5.9)

These expressions can then be substituted into

ds2 = dx2 + dy2 + dz2 , (5.10)

and after some algebra involving repeated use of the identity sin2 φ + cos2 φ = 1, one
again obtains Eq. (5.8).
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A CLOSED THREE-DIMENSIONAL SPACE:

The goal here is to use the same techniques to describe a closed three-dimensional
space. This space will be homogeneous and isotropic, and it will have a finite volume
but no boundary. Since the space is homogeneous and isotropic, it is a candidate for the
space in which we live.

To derive a metric for the three-dimensional space, one simply repeats the steps
carried out above with one additional dimension. One begins therefore in a Euclidean
space with four dimensions, and hence with four Cartesian coordinates which I will call
(x, y, z, w). The surface of a sphere in this four-dimensional space is then described by
the equation

x2 + y2 + z2 + w2 = R2 . (5.11)

Note that the surface of the sphere is a three-dimensional space, since it can be described
by three coordinates.

To explicitly describe the surface by three coordinates, one can introduce one more
angular variable in addition to θ and φ. We therefore introduce ψ, which will represent
the angle between the point being described and the w-axis. Since ψ measures the angle
from an axis, like θ it ranges from 0 to π. One can then look at the point projected into
the x-y-z subspace and define the variables θ and φ as we did above. (By “project into
the x-y-z subspace”, I simply mean to ignore the w-coordinate.) Pictorially one would
depict ψ as

Figure 5.10: The new angular variable ψ, which measures
the angle from the w-axis.

and in terms of equations it can be expressed as

x = R sinψ sin θ cosφ

y = R sinψ sin θ sinφ

z = R sinψ cos θ

w = R cosψ ,

(5.12)
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where
0 ≤ ψ ≤ π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , (5.13)

and φ = 0 is identified with φ = 2π.

Since the coordinate system is to describe the surface, some point on the surface has
to be chosen to be the origin of the coordinate system. For the two-dimensional spherical
surface of the last section, we can consider the north pole to be the center, and then θ is
the radial coordinate that measures the distance from the center. Here we are choosing
the center of our coordinate system to be the positive w-axis, which we will also describe
as the “north pole”. The coordinates of the north pole in the four-dimensional embedding
space are (x= 0, y= 0, z= 0, w=R). In the polar coordinate system the north pole is
described by ψ = 0, and the distance from the north pole is given by Rψ. Thus ψ plays
the role of the radial coordinate in this system.

To derive the metric, one could proceed purely algebraically along the lines of
Eq. (5.9) above, or one could use the geometric arguments which were used to moti-
vate Eq. (5.8). For the geometric approach, one notes that a variation from ψ to ψ+ dψ
results in a displacement by a distance R dψ. A variation in θ or φ results in a displace-
ment contained entirely within the x-y-z three-space; ds2 is given by Eq. (5.8) times an
overall factor of sin2 ψ due to the fact that the radius in the x-y-z space is given by
r sinψ. Assuming that these two displacements are orthogonal to each other, the metric
can be written as

ds2 = R2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)]
. (5.14)

To complete the justification of Eq. (5.14), we should verify that the infinitesimal
displacement of the point when ψ is varied is orthogonal to the displacement caused by
infinitesimal variation of θ or φ. To see this, let us use vector notation ~r ≡ (x, y, z, w) to
describe the four-dimensional space. Then, as ψ is varied from ψ to ψ + dψ, the vector
~r varies from ~r to ~r + d~rψ, where we can see from Eq. (5.12) that

d~rψ =

(
∂x

∂ψ
,
∂y

∂ψ
,
∂z

∂ψ
,
∂w

∂ψ

)
dψ

= R cosψ(sin θ cosφ, sin θ sinφ, cos θ, 0) dψ −R sinψ(0, 0, 0, 1) dψ .

(5.15)

Note that the components in the x-y-z subspace are proportional to (x, y, z) =
R sinψ(sin θ cosφ, sin θ sinφ, cos θ), so within this subspace the vector points radially out-
ward from the origin. Similarly, as θ is varied from θ to θ+ dθ, ~r varies from ~r to ~r+ d~rθ,
where

d~rθ =

(
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
,
∂w

∂θ

)
dθ

= R sinψ(cos θ cosφ, cos θ sinφ,− sin θ, 0) .

(5.16)
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This time there is no w-component, and we know that varying θ does not change x2+y2+

z2, and therefore the components within the x-y-z subspace make a tangential vector.

Since a tangential vector is orthogonal to a radial vector, it follows that d~rψ · d~rθ =

0, which is what we wanted to prove. The geometrical argument is easily verified by

straightforward calculation:

d~rψ · d~rθ = R2 sinψ cosψ[sin θ cos θ cos2 ψ

+ sin θ cos θ sin2 φ− sin θ cos θ + 0] = 0 .
(5.17)

A similar argument guarantees that d~rψ is also orthogonal to d~rφ, so the justification of

Eq. (5.14) is complete.

Remember that the coordinate system that one uses to describe a curved space is

totally arbitrary. Another choice that is frequently used to describe this space is to

replace ψ by

u ≡ sinψ . (5.18)

Note that u is double-valued: as ψ varies over its range from 0 to π, u varies from 0 to 1

and then decreases back to 0. The new metric can then be found by noting that

du = cosψ dψ =
√

1− u2 dψ , (5.19a)

and so

dψ2 =
du2

1− u2
, (5.19b)

and then

ds2 = R2

{
du2

1− u2
+ u2

(
dθ2 + sin2 θ dφ2

)}
. (5.20)

In these coordinates it is particularly easy to see that in a small region about the origin,

i.e., for |u| � 1, the u2 in the denominator can be ignored, and the metric becomes the

metric for Euclidean space in spherical polar coordinates. This is just an example of

the general principle introduced by Gauss: as long as ds2 is expressed as a quadratic

function of the coordinate differentials, then in any infinitesimal region it is possible to

find coordinates for which the metric is Euclidean.

The geometry of this space will be pursued further in the next problem set.
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IMPLICATIONS OF GENERAL RELATIVITY:

Eqs. (5.14) or (5.20) describe a curved three-dimensional space which is finite but
without boundary. The length scale of this space is described by the parameter R, which
can have any value. Since R corresponds to the radius of the sphere as embedded in the
four-dimensional space, we will refer to R as the radius of curvature of the space.

Since general relativity describes gravity as a distortion of the spacetime metric,
however, one might expect that the dynamics of general relativity would determine the
curvature of the space, and hence determine the quantity R. The calculations are beyond
these lectures, but the result is simple. General relativity requires that the geometry
of the universe be non-Euclidean, except for the special case in which the parameter k
defined in Lecture Notes 3 is zero. This is why the k = 0 model is called flat. When
k > 0, which we have been calling a closed universe, general relativity requires that the
geometry be a closed three-dimensional space, as described by the metric of Eqs. (5.14)
or (5.20). Thus, if gravity is strong enough to cause the universe to recollapse, then it is
also strong enough to curve the universe back on itself to create a universe that is finite
but unbounded.*

Using Newtonian arguments, we have already calculated how the size of the model
universe changes with time, proportional to the scale factor a(t). The Friedmann equa-
tions that we obtained are identical to the predictions of general relativity, so the size
of the universe will be proportional to the scale factor a(t) that we already calculated.
For the closed universe geometry, however, the size of the universe is proportional to
the radius of curvature R, so consistency requires that R must be proportional to a(t).
Furthermore, we recall that the value of a(t) depends on the size of the “notch.” The
radius of curvature R, however, is a physical length that must be measured in physical
distance units, such as meters. Thus, dimensional consistency requires that R(t) to be
proportional to a(t)/

√
k, which also has the units of physical length. The constant of

proportionality is fixed by the details of general relativity, but the answer is that the
constant of proportionality is 1:

R2(t) =
a2(t)

k
. (5.21)

Although the quantity a2(t)/k has been described in the context of a purely Newtonian
calculation, the speed of light was inserted into the definition of k, which was given by
Eq. (3.30) as

k = −2E

c2
, where E =

1

2
ȧ2 − 4π

3

Gρi
a

.

* Warning: the simple correspondence between the closure of the universe in time and
the closure of the universe in space holds for matter-dominated universes, and even for
universes containing arbitrary mixes of matter and radiation. However, when we explore
the consequences of a nonzero cosmological constant in Lecture Notes 7, we will find
that the relation no longer holds. Universes which are spatially closed might nonetheless
expand forever, and universes which are spatially open might nonetheless recollapse.
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Thus Eq. (5.21) can be written as

R2(t) =
a2(t)c2

2E
,

which shows that curvature is explicitly a relativistic effect. In the nonrelativistic limit
where c becomes infinitely large compared to all other velocities, R(t) will approach in-
finity. Thus in the nonrelativistic limit the radius of curvature of the universe approaches
infinity, so the space becomes closer and closer to Euclidean. (Note that the surface of a
sphere of infinite radius is actually a plane.)

One can then rewrite the equations of evolution in terms of R(t). Using

H2 =

 ȧ
a

2

=
8π

3
Gρ− kc2

a2
(5.22)

from Eqs. (3.25) and (3.31), one has

H2 =

 ṘR
2

=
8π

3
Gρ− c2

R2
. (5.23)

To express the value of R(t) in terms of observables, one can replace ρ by Ωρc , where ρc
is given by 3H2/(8πG) as in Eq. (3.33). One then has

R =
cH−1√
Ω− 1

, (5.24)

which is the same as Eq. (4.32). Note that as Ω becomes closer to one (approaching
from above), R(t) becomes larger and larger, so the space becomes closer and closer to
Euclidean. In addition, Eq. (5.24) shows explicitly that R(t) is proportional to c, as we
discussed in the previous paragraph. Thus, if the speed of light is taken to be infinitely
larger than all other velocities, then again the space becomes Euclidean. Curvature is
therefore a relativistic effect.

THE ROBERTSON-WALKER FORM OF THE METRIC:

When Eq. (5.21) is substituted into Eq. (5.20), the resulting metric is given by

ds2 =
a2(t)

k

{
du2

1− u2
+ u2

(
dθ2 + sin2 θ dφ2

)}
, (5.25)
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which is a little more complicated than necessary. It is convenient to replace the radial
coordinate u (where u ≡ sinψ) with a new radial coordinate r defined by

r ≡ u√
k
≡ sinψ√

k
. (5.26)

Then dr = k−1/2du, and the metric can be rewritten as

ds2 = a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (5.27)

This is the standard form, called the Robertson-Walker metric. Since the coordinate r
is proportional to u, and u is double-valued, so is r. That is, r = 0 at the center of the
coordinate system, which is identified with the north pole of the sphere that describes the
closed universe. As r grows the point described by (r, θ, φ) moves away from the north
pole, and r reaches its maximum value of 1/

√
k when the point reaches the equator of

the sphere. If one continues to move the point in the same direction, then r decreases
back to zero as the point moves from the equator to the south pole, where r again is zero.

THE OPEN UNIVERSE:

We have seen that when k > 0 the universe is spatially closed (finite volume), and
that it approaches an infinite volume Euclidean space as k → 0 (i.e., in this limit the
radius of the sphere approaches infinity). What happens if k < 0?

As you have probably learned from your experience in physics, in many cases the
same equations will hold whether the variables that occur in those equations are positive
or negative. Thus, we might expect that the formulas derived above would be valid for
k < 0, and this is indeed the case. However, there is one complication which should be
pointed out. Above we made the change of variables given by Eq. (5.26), involving the
quantity

√
k . This quantity would be imaginary if k were negative, and thus it would

not be possible for both u and r to be real. One can see from Eq. (5.25) that the metric
in terms of u is pathological when k is negative, since ds2 is not positive definite. For
u < 1 it is in fact negative definite, and for u > 1 the sign is indeterminate, since the
angular pieces contribute negatively while the radial piece contributes positively. Thus,
it seems clear that the u variable must be discarded when k < 0. On the other hand,
the metric in the form of Eq. (5.27) remains perfectly well behaved for negative values of
k. To minimize the possible confusion of dealing with negative quantities, we can define
κ = −k, and rewrite the Robertson-Walker metric (5.27) for open universes as

ds2 = a2(t)

{
dr2

1 + κr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

(Open universe, κ > 0)

(5.28)
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While it is reasonable to assume that Eq. (5.28) is correct, our derivation was cer-
tainly far from rigorous. I will not try to give a rigorous derivation, but I will try at
least to sketch how a rigorous derivation could be constructed. If we wanted to be more
rigorous, we would begin by summarizing the goal: to construct a metric describing a
homogeneous and isotropic space. While the θ and φ angular coordinates are not very
obviously isotropic, we are sufficiently familiar with this construction to be convinced
that the angular dependence of the metric above is isotropic. Although the coordinate
system makes the north pole (θ = 0) look like a special direction, we know that the coor-
dinates could be redefined to put the north pole of the coordinate system at any angle.
The homogeneity of the Robertson-Walker metric is similar, but less familiar to us. For
the closed Robertson-Walker metric we know that the space is homogeneous, because we
derived the metric by starting with the manifestly homogeneous 3-dimensional sphere
embedded in four Euclidean dimensions. But the Robertson-Walker coordinates make
the origin (r = 0) look special, just as the angular coordinates make the north pole look
special. As in the case of the angular coordinates, we know that the origin of the closed
Robertson-Walker coordinate system is not really special, and that we could redefine our
coordinate system so that the origin can be put at any location.

To show that the open Robertson-Walker metric in Eq. (5.28) is homogeneous, we
would start by studying the homogeneity of the closed universe metric in detail, turning
the verbal statements in the previous paragraph into an explicit set of coordinate trans-
formations that show how to move the origin to an arbitrary point. The details become
rather complicated, as indeed they would if we tried to explicitly show how to construct
a coordinate transformation to move the north pole of the (θ, φ) angular coordinates.
Nonetheless, once the equations are written, it would become clear that they are just a
set of algebraic relations: if they hold for all positive k, they will necessarily hold for neg-
ative k as well. Thus the same algebra that shows the closed Robertson-Walker universe
to be homogeneous also shows that the open metric is homogeneous.

We will not try to show it, but it can be shown that any three-dimensional homoge-
neous and isotropic space can be described by the Robertson-Walker metric, Eq. (5.27),
where k can be positive, negative, or zero. Other coordinate systems are of course possi-
ble, but geometrically different spaces are not.

Note that the sign of k affects the question of whether the space is finite or infinite.
For k > 0, Eq. (5.27) implies that something peculiar happens when kr2 = 1, at which
point the metric is singular. Since r is related to the original ψ coordinate by r =
sin(ψ)/

√
k, one sees that this value of the radius variable corresponds to ψ = π/2, and

hence the equator of the original sphere embedded in four dimensions. There is nothing
singular about the space, but the metric becomes singular because the coordinate r
behaves peculiarly, reaching a maximum value. Beyond the equator, r must get smaller
and then approach zero at the “south pole” (x = 0, y = 0, z = 0, w = −R). Thus, the
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space is finite. However, if k < 0 then the metric is given by Eq. (5.28), which remains
perfectly well-defined for all values of r, and thus the range of the r-coordinate is infinite.
This does not by itself prove that the space is infinite, since the value of a coordinate
is not directly measurable. However, one can calculate the physical distance from the
origin to a point with radial coordinate r by integrating the metric of Eq. (5.28) along a
radial path (with dθ = dφ = 0):

`phys(r) = a(t)

∫ r

0

dr′√
1 + κr′2

=
sinh−1

√
κ r√

κ
, (5.29)

where the integration can be carried out by substituting r′ = sinh(ψ)/
√
κ. Since the

inverse sinh function can become arbitrarily large, the space is infinite.

The G-B-L geometry discussed in the introduction is simply the two-dimensional
version of the space of an open universe at some arbitrary fixed time. The realization by
Klein described in Eqs. (5.1) and (5.2) represents a somewhat peculiar choice of coordinate
system.

THE GENERALIZATION FROM SPACE TO SPACETIME

Eq. (5.27) actually shows only a spatial metric, while I said earlier that general
relativity describes the gravitational field in terms of a spacetime metric. To put the
spacetime metric into context, we recall that in special relativity it is possible to define
a Lorentz-invariant separation between two events. Specifically, if the coordinates of an
event A are (xA, yA, zA, tA), and the coordinates of an event B are (xB , yB , zB , tB), then
the Lorentz-invariant separation between A and B is defined by

s2 ≡ (xA − xB)
2

+ (yA − yB)
2

+ (zA − zB)
2 − c2 (tA − tB)

2
. (5.30)

By saying that this expression is Lorentz-invariant, we mean that it has the same value
in all inertial references frames, even though the individual terms may very well have
different values.

While the value of s2 is the same in all inertial frames, the intuitive meaning of s2 is
easiest to see by considering its value in particular frames. If s2 > 0, then the separation
between the events is called spacelike. In that case it is always possible to find an inertial
reference frame in which the two events are simultaneous, and in that frame s is equal to
the spatial distance between the two events. Equivalently, we can say that it is always
possible to find an inertial observer to whom the two events appear simultaneous. s is
then equal to the distance between these events, as measured by a ruler at rest with
respect to this observer. s can be called the proper distance between the events. If s2 < 0
then the separation is called timelike, and in that case it is always possible to find an
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inertial observer to whom it appears that the two events occur at the same position. If
she defines

s2 = −c2τ2 , (5.31)

then τ is the time separation between the events when measured on her clock. τ is often
called the proper time between the two events. Note that if the two events happen to the
same object, such as two flashes of the same strobe light, and the object is moving at
constant velocity, then the proper time between the flashes is just the time as measured
by a clock at rest with respect to the strobe light. If ds2 = 0, then the separation between
the two events is called lightlike, and in that case a light pulse leaving the earlier event
will arrive at the location of the latter event just as it occurs.

If you are not familiar with the Lorentz-invariant separation, you may want to look
at the Appendix at the end of this set of Lecture Notes. There I start with the three basic
effects of special relativity, as described in Lecture Notes 1, and show how to construct the
Lorentz transformation. The Lorentz transformation is the set of equations that describe
how to relate the coordinates of an event in two different inertial coordinate frames,
where one frame is moving relative to the other. Using the Lorentz transformation, the
Appendix goes on to show that the expression defined by Eq. (5.30) is truly Lorentz-
invariant. (For purposes of this course, however, the Appendix can be considered outside
the course requirements. It is okay for you to just accept the result that s2 is Lorentz-
invariant.)

The spacetime metric of general relativity is the curved-spacetime generalization
of the Lorentz-invariant separation of special relativity. Following the ideas of Gauss
discussed near the beginning of these lecture notes, we will restrict our attention to de-
scribing the separation between two infinitesimally separated spacetime points (x, y, z, t)
and (x+ dx, y+ dy, z+ dz, t+ dt). For special relativity the metric of Eq. (5.30) reduces
in the infinitesimal case to

ds2 = dx2 + dy2 + dz2 − c2 dt2 , (5.32)

which is known as the Minkowski metric. Continuing with Gauss’s approach, we insist
— even when we describe arbitrary curved spacetimes — that ds2 be expressed as a
quadratic expression in the coordinate differentials. This implies (although we will not
show it) that for any spacetime point P it is always possible to choose a coordinate system
(x′, y′, z′, t′) so that the metric reduces to the Minkowski metric in an infinitesimal region
around that point. If the spacetime is curved the metric will not have the Minkowski form
outside this infinitesimal region, however, so the metric will be called locally Minkowskian
at the point P .

In curved spacetimes there is no coordinate system in which the metric has the
Minkowski form everywhere. Thus, to infer the separation between two points one must
know not only the values of the coordinates, but also the metric. The coordinates are
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then not themselves direct measurements of distance, but instead are just an arbitrary
way of labeling points. Since one needs to introduce a metric for any coordinate system,
there is nothing that forces us to use any particular coordinate system or set of coordinate
systems. This is different from special relativity, where the metric (5.32) is valid only for
a special class of coordinate systems, called inertial coordinate systems, which are related
to each other by a special class of transformations, called Lorentz transformations. If I
were to replace the coordinate x by x′ ≡ sinhx, then the metric would no longer look
like Eq. (5.32). The coordinate transformation x′ ≡ sinhx is therefore not allowed in
the standard formulation of special relativity (although one could use the formalism of
general relativity for a special relativity problem if one chose to.) In general relativity, on
the other hand, there is usually no coordinate system in which the metric is particularly
simple, so the formalism is designed to allow any choice of coordinates, and hence any kind
of coordinate transformation. In general relativity, therefore, x′ = sinhx is a perfectly
acceptable coordinate transformation. As long as the coordinates allow a unique way to
label each point in spacetime, they are acceptable. If I change coordinate systems, I can
always change the metric so that the value of ds2 between any two points remains the
same. For this reason ds2 is said to be coordinate-invariant.

When we introduced the two-dimensional spatial metric in Eq. (5.3), we assumed that
ds2 represented the distance between the two points, where the meaning of “distance”
was no different from what it would mean in Euclidean geometry — it is what one would
measure with a ruler. Here we are trying to generalize this method, so we want to define
ds2 to have the same meaning it would have in special relativity. In special relativity we
were able to define ds2 in terms of the observations made by inertial observers, which
means observers for whom the law of inertia is valid, which in turn means observers to
whom no net force is applied. In general relativity, forces other than gravity are treated
in essentially the same way as in special relativity, so there is no problem defining what
it means for the net nongravitational force on an observer to vanish. But gravity is
trickier. Consider, for example the homogeneously expanding universe that we discussed
in Lecture Notes 2, 3, and 4. If I am moving with the expansion of the universe (i.e., if
I am at rest with respect to the comoving coordinate system), then I can view myself as
being at rest. If I look at the distant galaxies around me, however, they will appear to be
slowing in their outward motion, and hence accelerating towards me, under the influence
of gravity. But an observer on one of those galaxies would consider himself to be at rest,
and I would appear to be accelerating. According to general relativity both points of
view are equally valid, so the concept of gravitational acceleration becomes relative.

Another simple and famous example that illustrates the relative nature of gravi-
tational forces is the elevator (thought) experiment. Suppose a man, holding a bag of
groceries, is standing in an elevator. Now suppose that the elevator cables are cut, and
the elevator free falls downward without friction or air resistance. The man will then
accelerate downward with the same acceleration as the elevator, and he will feel no force
between his feet and the elevator floor. If he lets go of the bag of groceries, the bag
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would not move relative to him, but would appear to float in front of him. In the frame
of the Earth, all the objects (the elevator, the man, and the groceries) are accelerating
downward under the force of gravity. But in the frame of the elevator, everything ap-
pears weightless. (Everything is is weightless until the big crunch occurs in the building’s
basement — but remember, this in only a thought experiment. No living creatures were
harmed in the writing of this paragraph.)

We are accustomed to thinking of the frame of the Earth as being the correct “phys-
ical” description, because the frame of the Earth is nearly inertial over a large region of
space and time. In the context of general relativity, however, both frames are equally
correct. Thus, the presence or absence of gravity is determined by which frame of ref-
erence we are using. This idea in fact is one of the foundational concepts of general
relativity, known as the equivalence principle. The physics of the accelerating frame of
the elevator, with no gravity, is equivalent to the physics in the rest frame of the Earth,
with its gravitational field. The equivalence principle says that it is always possible, in
a sufficiently small region, to find a frame of reference in which the force of gravity is
absent.

The bottom line here is that if we are trying to generalize the notion of an inertial
observer in special relativity, we cannot insist that the gravitational force on the observer
vanishes, because this condition will appear to hold in some coordinate systems but not
others. So, instead we insist only that the net nongravitational force on the observer
vanish, and we say that such an observer is free-falling. Note that the man in the falling
elevator is free-falling, while a man standing in an elevator that is at rest with respect to
the Earth is not. In the latter case the floor is pushing upward on the man’s feet, so the
net nongravitational force is nonzero.

With the replacement of inertial observers by free-falling observers, the meaning of
ds2 in general relativity is the same as what we had in special relativity. If the value of
ds2 calculated between two events is positive, then there is always a free-falling observer
to whom the events appear simultaneous. In this case, the proper distance ds between
the events is the distance between them, as measured by a ruler at rest relative to this
free-falling observer. If ds2 < 0, then there is always a free-falling observer for whom the
events appear to happen at the same location. One then defines

ds2 ≡ −c2 dτ2 , (5.33)

as in Eq. (5.31), where dτ is again called the proper time interval between the events. It
is the time interval between the two events that would be measured by a clock carried
by the free-falling observer mentioned above. If ds2 = 0, then the two events can be
connected by a light pulse, which leaves the first event and arrives at the second.*

* The concept of a free-falling observer is intimately linked to the concept of a locally
Minkowskian coordinate system, so the meaning of ds2 could also have been explained in
terms of these coordinate systems. The free-falling observers are those that are at rest or
moving at a constant velocity relative to a coordinate system that is locally Minkowskian
at the location of the observer.
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INCLUSION OF TIME IN THE ROBERTSON-WALKER METRIC

What happens when we add time to the Robertson-Walker metric of Eq. (5.27)? In
general the answer can depend on how we choose to define our time variable, but we
will hold with the choice called cosmic time, which we discussed in Lecture Notes 2 (in a
section called “The Synchronization of Clocks”). We concluded there that it is possible to
define a cosmic time variable t which can be measured locally. That is, each observer who
is at rest with respect to the matter in her vicinity can measure t on her own wristwatch.
The wristwatches throughout the universe can be synchronized, once and for all, by some
choice of a cosmic event. For example, we can all agree to set our wristwatches to read
12 billion years when the temperature of the cosmic microwave background radiation
reaches 3.0 K, or when the Hubble parameter reaches 85 km-sec−1-Mpc−1. Once the
watches are synchronized, we argued that the homogeneity of the universe guarantees
that they will stay synchronized: all watches will read the same time when the cosmic
background radiation temperature reaches 2.0 K, or when the Hubble parameter reaches
75 km-sec−1-Mpc−1. In practice we usually define the synchronization of cosmic time
so that t = 0 corresponds to our best estimate of when a(t) was equal to zero, and the
Hubble parameter and temperature were infinite. (More precisely, we choose t = 0 to
correspond to the time when a(t), as extrapolated in our mathematical model, was equal
to zero. As discussed in The Big Bang Singularity section of Lecture Notes 4, there is no
reason for us to have confidence in this extrapolation.)

I think it will be most straightforward for me to write the answer first, and then
explain why it could not have been anything different. If the time variable t is taken to
be cosmic time, and the metric is to be homogeneous and isotropic, then it can always
be written as

ds2 = −c2 dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (5.34)

So, why does this have to be the answer? Consider first the case in which the
separation dt = 0 (i.e., when the two events whose separation we are calculating have
the same time coordinate). In that case Eq. (5.34) reduces to our previous expression,
Eq. (5.27). Since we have already stated (albeit without proof) that Eq. (5.27) describes
the most general possible three-dimensional space that is homogeneous and isotropic,
the answer for the dt = 0 case is settled. We could of course choose other coordinates
that would make the spatial part of Eq. (5.34) look different, but Eq. (5.34) as written
describes the most general possible geometry.

Now consider the interval defined by dt 6= 0, but dr = dθ = dφ = 0. This represents
the motion of a comoving observer for an increment of coordinate time dt. There are
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no nongravitational forces acting on the comoving observer, so she is also a free-falling
observer. This is a timelike separation, so we use the definition ds2 = −c2 dτ2 from
Eq. (5.33), and we deduce that dt = dτ , where dτ is the time measured on the comoving
observer’s wristwatch. But an interval of cosmic time is defined as the interval measured
on the wristwatches of comoving observers, so the metric of Eq. (5.34) implies that t is
precisely the time variable that we have called cosmic time. Note that if the coefficient
of the dt2 term in the metric were anything other than −c2, we would have found that
the time coordinate interval dt is proportional to wristwatch time, but not equal to it.

We have now verified that the terms that are present in Eq. (5.34) must have the
forms that they have. But what about the possibility of adding other terms. Since the
metric is required to be a quadratic function of the coordinate differentials, the only
possible new terms that could be added are terms proportional to dtdr, dtdθ, or dtdφ.
(Recall that terms like dr dθ would contribute even when the time is fixed, dt = 0, so such
terms have already been ruled out by the statement that Eq. (5.27) is the most general
possible homogeneous and isotropic space.) Let us consider first the possibility of adding
a term dr dt to the metric. The claim is that such a term would violate our assumption
of isotropy, because it would create a distinction between the direction of increasing and
decreasing r. To see this, consider two observers, Tweedledee and Tweedledum, who
both start at r = r0 at time t = t0. Tweedledee is moving outward and Tweedledum is
moving inward, both with coordinate speed dr/dt = v (and with fixed values of θ and
φ). At t = t0 + dt, Tweedledee will be located at r = r0 + v dt, while Tweedledum will
be located at r = r0 − v dt. Thus the displacement vector of Tweedledee has dr > 0,
while that of Tweedledum has dr < 0, and both have the same dt. The hypothetical new
term will therefore contribute to ds2 with opposite signs for the two cases, so the values
of ds2 will be different for Tweedledee and Tweedledum. Since ds2 = −c2 dτ2, and dτ is
the wristwatch time that each will measure, we conclude that each will have a different
wristwatch time at the end of this interval. When they each compare with the comoving
observers whose wristwatches read cosmic time, t = t0 + dt, the two will see different
discrepancies. This means that there is a Tweedledee/Tweedledum asymmetry, but the
only difference in the setup was their direction of travel. Thus, the addition of such a
term would be a violation of isotropy. An identical argument can be made for dtdθ or
dtdφ terms, so we conclude that Eq. (5.34) is necessarily the right answer.

EQUATIONS FOR A GEODESIC

As was stated earlier, in general relativity a freely falling particle is assumed to travel
on a geodesic of the curved spacetime. Stated more precisely, the equations of motion in
general relativity are derived from the assumption that the path length from the initial
point to the final point should have a vanishing derivative with respect to any variation
of the path that does not vary the endpoints. If the meaning of this statement is not
clear to you at this point, then don’t worry yet — it will hopefully become clear once we
define some notation.



INTRODUCTION TO NON-EUCLIDEAN SPACES p. 25

8.286 LECTURE NOTES 5, FALL 2018

We will start by deriving the equation for a geodesic in a two-dimensional space with
a positive-definite metric (i.e., with all lengths positive). The metric will be assumed to
have the general form specified by Gauss, and given earlier as Eq. (5.3):

ds2 = gxxdx2 + gxydxdy + gyxdy dx+ gyydy2 , (5.3)

where gxx, gxy, gyx, and gyy are functions of position (x, y) and are together called the
metric of the space. As explained earlier, we take gyx ≡ gxy.

The first step will be to simplify the notation, since Eq. (5.3) requires a lot of writing.
To start, rename the coordinate x as x1, and rename y as x2. Then the two coordinates
together can be described as xi, where i is understood to take on the values 1 and 2.
Eq. (5.3) can then be rewritten as

ds2 =
2∑
i=1

2∑
j=1

gij(x
k) dxi dxj , (5.35)

where I write the metric as gij(x
k) to indicate explicitly that it is a function of all

of the coordinates xk. One further simplification is known as the Einstein summation
convention. This is no doubt Einstein’s most important contribution to ecology, saving
barrels of ink and tons of paper each year. The convention stipulates that whenever an
index is repeated, it is automatically summed over the standard range (which in this case
is from 1 to 2). Using this convention, Eq. (5.35) can be written compactly as

ds2 = gij(x
k) dxi dxj . (5.36)

(In using this notation, it is important that the context makes it clear that the su-
perscript i in xi is to be interpreted as an index, and not a power. You might wonder
why people tolerate this confusion, when it could be avoided by writing all indices as sub-
scripts. The reason is that curved space geometers find it useful to use both superscripts
and subscripts to denote indices. Quantities with upper indices (superscripts) are called
contravariant, and quantities with lower indices (subscripts) are called covariant. These
indices can always be arranged so that each summation over a repeated index involves
one upper and one lower index, as has been done in Eq. (5.36). To understand fully the
meaning of upper and lower indices, one must study how the equations of non-Euclidean
geometry are transformed by a redefinition of the coordinate system. We will skip this
topic, but I point out that the formalism is constructed so that the rules of transformation
are indicated by whether the indices are upper or lower. Furthermore, the transformation
rules guarantee that any sum over a repeated index, with one upper and one lower, is
invariant under a change of coordinates.)
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Now we can state the geodesic problem: given two points xiA and xiB , what equation
determines the geodesic, or shortest path, between the two points? (In this case it will
be the shortest path.)

An arbitrary path can be described by a function xi(λ), where λ is a parameter
which we take to run between 0 and some final value λf . Thus, the statement that the
path runs from xiA to xiB translates into the equations

xi(0) = xiA, xi(λf ) = xiB . (5.37)

Now focus attention on an infinitesimal segment of the curve, from λ to λ + dλ. The
change in the values of the two coordinates over this segment is given by

dxi =
dxi

dλ
dλ . (5.38)

Since dλ is infinitesimal, one need not consider terms in Eq. (5.38) that are higher order
in dλ. Combining this equation with Eq. (5.36), one has

ds2 = gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ2 ,

and then

ds =

√
gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ . (5.39)

The total length of the path is then

S[xi(λ)] =

∫ λf

0

√
gij
(
xk(λ)

) dxi

dλ

dxj

dλ
dλ . (5.40)

The path length S[xi(λ)] is actually a function of the function xi(λ). A function of a
function is usually called a functional, and the argument of the functional is usually
enclosed in square brackets.

Next we consider how the path length will vary if the path is changed infinitesimally.
To formulate this precisely, we write the equation for a nearby path, with the same
endpoints, as

x̃i(λ) = xi(λ) + αwi(λ) , (5.41a)

Figure 5.11: A path x(λ) and a small variation of it, x̃(λ).
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where α is a number (which we will take to be small), and the path variation function
wi(λ) is required to satisfy

wi(0) = 0 , wi(λf ) = 0 , (5.41b)

so that the new path x̃i(λ) has the same endpoints as original path xi(λ). The rule for
a geodesic is that no matter how the path is varied, the original length is a minimum.
This implies that if wi(λ) is held fixed, for any value that satisfies Eq. (5.41b), the path
length of x̃i(λ) should have a minimum at α = 0. Thus,

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

= 0 for all wi(λ) . (5.42)

The problem now is simply to calculate the derivative in Eq. (5.42). To simplify the
notation, we define

A(λ, α) = gij
(
x̃k(λ)

) dx̃i

dλ

dx̃j

dλ
, (5.43)

so we can write

S
[
x̃i(λ)

]
=

∫ λf

0

√
A(λ, α) dλ . (5.44)

Note that the derivative can be taken inside the integral that defines S[x̃i(λ)], since the
limits of integration do not depend on α. Using the chain rule of differentiation, we find

d

dα
gij
(
x̃k(λ)

)∣∣∣∣
α=0

=
∂gij
∂xk

∣∣∣∣
xk=xk(λ)

∂x̃k

∂α

∣∣∣∣
α=0

=
∂gij
∂xk

(
xi(λ)

)
wk , (5.45)

where the Einstein summation convention applies to the sum over k. Differentiating
Eq. (5.44), one then finds

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1

2

∫ λf

0

1√
A(λ, 0)

{
∂gij
∂xk

wk
dxi

dλ

dxj

dλ
+

+gij
dwi

dλ

dxj

dλ
+ gij

dxi

dλ

dwj

dλ

}
dλ ,

(5.46)

where the metric gij is to be evaluated at xk(λ).

The expression can be further simplified by recognizing that the summed indices are
“dummy” indices, in the sense that their names can be changed without changing the
value of the expression. (When one does this, of course, it is essential that the name be
changed in the same way for each occurrence of the index.) Suppose then that the third
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term in curly brackets of the above equation is rewritten by substituting i→ j and j → i.
It then becomes identical to the second term, except that the indices on gij are reversed.
But gij is symmetric in the sense that gji = gij (see the remarks following Eq. (5.3)), so
the two terms are identical. Thus,

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1

2

∫ λf

0

1√
A(λ, 0)

{
∂gij
∂xk

wk
dxi

dλ

dxj

dλ
+ 2gij

dwi

dλ

dxj

dλ

}
dλ . (5.47)

The next step is to simplify the dependence on wi(λ). The expression above depends
explicitly on both the function wi(λ) and its derivative, but the dependence on the
derivative can be removed by an integration by parts. Note that the term∫ λf

0

[
1√
A
gij

dxj

dλ

]
dwi

dλ
dλ

can be integrated using ∫
udv = −

∫
v du+ [uv]

λ=λf

λ=0 ,

where

u =
1√
A
gij

dxj

dλ
, du =

d

dλ

[
1√
A
gij

dxj

dλ

]
dλ

dv =
dwi

dλ
dλ , v = wi .

The surface term [uv]
λ=λf

λ=0 then vanishes, since wi(0) = wi(λf ) = 0. So,∫ λf

0

[
1√
A
gij

dxj

dλ

]
dwi

dλ
dλ = −

∫ λf

0

d

dλ

[
1√
A
gij

dxj

dλ

]
wi dλ . (5.48)

Thus, Eq. (5.47) simplifies to

dS

dα

∣∣∣∣
α=0

=
1

2

∫ λf

0

{
1√
A

∂gij
∂xk

dxi

dλ

dxj

dλ
wk − 2

d

dλ

[
1√
A
gij

dxj

dλ

]
wi
}

dλ .

If one also renames the indices in the first term by i→ j, j → k, k → i, one can write

dS

dα

∣∣∣∣
α=0

=

∫ λf

0

{
1

2
√
A

∂gjk
∂xi

dxj

dλ

dxk

dλ
− d

dλ

[
1√
A
gij

dxj

dλ

]}
wi(λ) dλ . (5.49)

The next step is to set the quantity in curly brackets in the expression above equal
to zero. To justify this, one must of course realize that the vanishing of an integral
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does not in general require that the integrand is zero — that is, it is very easy to find
nonzero functions that integrate to zero over some specified range. However, we need to
require that the derivative above vanish not merely for some particular value of wi(λ),
but rather that it vanish for all values of wi(λ) that are consistent with Eq. (5.41b). This
stronger requirement implies that the integrand must vanish. Note that if the quantity
in curly brackets did not vanish, one could choose wi(λ) to equal the quantity in curly
brackets, so the integral in Eq. (5.49) becomes the integral of a perfect square. Since then
the integrand is nonnegative, the integral can vanish only if the integrand is identically
zero. (Technically, the integrand can still be nonzero on a set of measure zero, such as
a discrete set of points, since the integral over such a set gives zero in any case. We
will restrict ourselves, however, to continuous functions, and then such a quantity must
vanish everywhere.) Thus,

d

dλ

[
1√
A
gij

dxj

dλ

]
=

1

2
√
A

∂gjk
∂xi

dxj

dλ

dxk

dλ
. (5.50)

The above equation is actually quite complicated, since the quantity A defined by
Eq. (5.43) is complicated. However, the equation also has more generality than we really
need: as we derived it, it will be valid for any parameterization xi(λ) of the path. If
we instead make a specific choice about how the path is to be parameterized, then the
equation can be simplified. In particular, we can simplify the equation tremendously by
choosing λ to be the path length, as measured along the curve. Recalling that

ds =

√
gij
(
xk(λ)

)dxi

dλ

dxj

dλ
dλ =

√
Adλ ,

one sees that dλ = ds requires

A = 1 (for λ = path length). (5.51)

Then the geodesic equation becomes

d

ds

[
gij

dxj

ds

]
=

1

2

∂gjk
∂xi

dxj

ds

dxk

ds
, (5.52)

where I have replaced λ by s to indicate clearly that it is the physical path length.

Eq. (5.52) is in many cases the most convenient form of the geodesic equation, but
it is nonetheless not the standard way that the geodesic equation is written in general
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relativity books. Instead, the standard form is to write an explicit equation for d2xi/ds2.

One begins by expanding the left-hand side of Eq. (5.52), using the chain rule:

d

ds

[
gij

dxj

ds

]
= gij

d2xj

ds2
+ ∂kgij

dxj

ds

dxk

ds
, (5.53)

where I have used the standard abbreviation

∂k ≡
∂

∂xk
. (5.54)

The geodesic equation then becomes

gij
d2xj

ds2
=

1

2
(∂igjk − 2∂kgij)

dxj

ds

dxk

ds
. (5.55)

Using the symmetry of the factor on the right, −2∂kgij can be rewritten more symmet-

rically as −∂kgij − ∂jgik. Eq. (5.55) can then be turned into an equation of the desired

form by inverting the matrix gij that appears on the left-hand side. One defines gij as

the matrix inverse of gij , which in index notation translates into the statement

gi`g`j = δij , (5.56)

where δij denotes the Kronecker δ-function (which is defined to be one if i = j, and zero

otherwise). One can then change the free index in Eq. (5.55) to `, and then multiply by

gi`. The result is written standardly in the form

d2xi

ds2
= −Γijk

dxj

ds

dxk

ds
, (5.57)

where

Γijk =
1

2
gi` (∂jg`k + ∂kg`j − ∂`gjk) . (5.58)

The quantity Γijk is called the affine connection.
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THE SCHWARZSCHILD METRIC

General relativity includes a set of equations known as the Einstein field equations,
which describe how a gravitational field is produced by matter. These equations are
the analogue of the Maxwell equations of electromagnetism, which describe how an elec-
tromagnetic field is produced by charges and currents. The Einstein field equations are
beyond the scope of this course, but it will nonetheless be useful to describe some features
of the solutions to the field equations.

Of particular interest are the solutions for spherically symmetric objects, such as
planets, stars, or black holes. In Newtonian mechanics, you will recall, the gravitational
field outside a spherical distribution of matter has the peculiar property that it is inde-
pendent of the details of the mass distribution. Outside of a spherical distribution, the
field is uniquely determined if the total mass is known, independent of how this mass
is distributed with radius. In general relativity, it turns out, the same feature is found
— the metric is determined solely by the total mass enclosed. The metric for a spher-
ically symmetric distribution of mass, in the region outside the mass, is given by the
Schwarzschild metric,

ds2 = −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

(5.59)

where M is the total mass of the object, and θ and φ are the usual polar coordinates.
Their range is given by 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ = 2π is identified with φ = 0.

Note that the metric becomes singular at r = 2GM/c2, which is known as the
Schwarzschild radius:

RS =
2GM

c2
. (5.60)

A metric is said to be singular if any of the coefficients become infinite, or if any of the
coefficients vanish; in this case both happen: the coefficient of the dt2 term vanishes at
the Schwarzschild radius, and the coefficient of dr2 becomes infinite. The singularity at
the Schwarzschild radius, however, does not indicate any true singularity in the structure
of space. If a person or instrument fell through the Schwarzschild radius, nothing peculiar
would be felt. In this case the singularity is caused only by the choice of the coordinate
system, and other coordinate systems can be constructed for which there is no singularity.
In this course, however, we will not have time to look at such coordinate systems. The
Schwarzschild metric is also singular at r = 0; unlike the singularity at r = RS , the
singularity at r = 0 is a true physical singularity. Physically measurable quantities, such
as the tidal forces associated with nonuniform gravitational fields, become infinite at
r = 0.
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Although the singularity at r = RS is only an artifact of the coordinate system, it can
be shown nonetheless that r = RS represents the point of no return for an object falling
into a black hole. If any object (even a photon) falls inside the Schwarzschild radius, then
it will never be able to escape. Thus, an object that is contained within its Schwarzschild
radius is called a black hole. The sphere at r = RS is called the “Schwarzschild horizon,”
meaning that it is impossible, from the outside, to see anything beyond r = RS .

The distinction between a black hole and a star is simply the question of whether this
Schwarzschild horizon exists. If the matter extends to radii beyond the value of RS indi-
cated by Eq. (5.60), then the Schwarzschild metric will not be valid at the Schwarzschild
radius. In this case the horizon may or may not exist, depending on the distribution
of matter inside the object. However, if the mass distribution is so compact that it is
contained within the Schwarzschild radius, then the Schwarzschild metric will describe
the space outside of the matter, and the Schwarzschild horizon will be guaranteed to
exist.

Just for orientation, we can compute the Schwarzschild radius of the sun, which has
a mass of 1.989× 1030 kg. Thus,

RS,� =
2× 6.673× 10−11 m3-kg−1-s−2 × 1.989× 1030 kg

(2.998× 108 m-s−1)2

= 2.95 km .

(5.61)

So if the sun were compressed to a size smaller than 2.95 km, it would become a black
hole.

GEODESICS IN THE SCHWARZSCHILD METRIC

Our purpose in introducing the Schwarzschild metric is mainly to provide an example
of the calculation of a geodesic in a realistic general relativity setting.

In this section we will calculate the geodesic, and hence the trajectory, for a particle
that is released from rest at r = r0 in the Schwarzschild metric of Eq. (5.59). Note that r
is a radial coordinate, in the sense that it provides a measure of how far a spacetime point
is from the center of symmetry. However, it would be misleading to call r the radius, since
it does not literally measure the distance from the center. If r is varied by an amount dr,
the new point is separated from the first not by dr, but instead by dr/

√
1− 2GM/rc2. r

is sometimes called the circumferential radius, since the term r2(dθ2 + sin2 θ dφ2) in the
metric implies that the circumference of a circle at a fixed value of r is equal to 2πr, as
in Euclidean geometry.

By spherical symmetry, we know that the particle will fall straight toward the center
of the sphere, so the coordinates θ and φ will remain constant. Thus, the terms in the
metric proportional to dθ2 and dφ2 will give no contribution as the particle moves along
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the trajectory. Since the spherical symmetry also guarantees that the other terms in the
metric are independent of θ and φ, these two angles can be completely ignored in solving
the problem; the values of the two angles will remain constant at their initial values.

The trajectory of such a particle is timelike, and can be parameterized by the proper
time as it would be measured on a clock that moves with the particle. The trajectory can
be described by the functions r(τ) and t(τ), where the latter function gives the value of
the coordinate t as a function of the proper time. The metric (5.59) gives the separation
dτ2 between two neighboring points along the trajectory. Dividing Eq. (5.59) by dτ2,
one finds the relation

c2 =

(
1− 2GM

rc2

)
c2
(

dt

dτ

)2

−
(

1− 2GM

rc2

)−1(
dr

dτ

)2

. (5.62)

This allows one to determine dt/dτ in terms of dr/dτ . To be more compact, we introduce
the notation

h(r) ≡ 1− RS
r

= 1− 2GM

rc2
, (5.63)

so Eq. (5.62) can be rewritten as

c2
(

dt

dτ

)2

= c2h−1(r) + h−2(r)

(
dr

dτ

)2

. (5.64)

To generalize the geodesic equation (5.52) to spacetime trajectories, there is nothing
significant that needs to be changed. We are changing the number of dimensions and we
are switching to a metric that is not positive definite, but neither of these changes affect
the derivation of the geodesic equation in any way. Since the trajectories of particles are
timelike, we parameterize the path not by s, which would be imaginary, but instead by
τ . This does not change the form of the equation either, since the only place where the
parameterization mattered was when we assumed that A = 1, in deriving Eq. (5.52) from
Eq. (5.50). But the derivation depended only on the prescription that A = constant, and
not on A = 1. In this case we will be using A = −c2, but the geodesic equation will be
unaffected. So, we can rewrite the geodesic equation as

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (5.65)

where I followed a common convention of using Greek letters for spacetime indices. The
letters µ, ν, λ, σ, etc. are summed from 0 to 3 when they are repeated, where x0 ≡ t.
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Note that of the 4 components of dxµ/dτ , only two are nonzero: dr/dτ and dt/dτ .
Since Eq. (5.64) allows us to find dt/dτ in terms of dr/dτ , it will be sufficient for us to
look at only the geodesic equation for dr/dτ . Writing Eq. (5.65) for µ = r, one finds

d

dτ

[
grr

dr

dτ

]
=

1

2
∂rgrr

(
dr

dτ

)2

+
1

2
∂rgtt

(
dt

dτ

)2

, (5.66)

where

grr = h−1(r) , (5.67)

and

gtt = −c2h(r) . (5.68)

Using the fact that ∂rh(r) = −RS/r2, Eq. (5.66) becomes

h−1(r)
d2r

dτ2
− h−2(r)

RS
r2

(
dr

dτ

)2

=

− 1

2
h−2(r)

RS
r2

(
dr

dτ

)2

− 1

2
c2
RS
r2

(
dt

dτ

)2

.

(5.69)

Now use Eq. (5.64) to eliminate dt/dτ , and notice that the terms involving dr/dτ cancel
against each other. The only remaining terms are proportional to h−1(r), so one can
multiply by the inverse of this quantity to obtain

d2r

dτ2
= −c

2

2

RS
r2

= −GM
r2

. (5.70)

This equation is identical in form to the corresponding equation in Newtonian me-
chanics, but the physics is far from identical. In the Newtonian case the time variable
denotes a universal time that can be read on any clock, while in the general relativity case
the time variable τ represents the proper time that would be measured by a clock that is
moving with the falling particle. The time that would be measured on a stationary clock
would be different.

Since Eq. (5.70) is a familiar differential equation, we can integrate it without diffi-
culty. The first step is to obtain a conservation of energy equation, which can be done
by multiplying the equation by dr/dτ . The equation can then be written as

d

dτ

{
1

2

(
dr

dτ

)2

− GM

r

}
= 0 , (5.71)
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which implies that the quantity in curly brackets is conserved. If the particle is released
from rest at r = r0, then the initial value of this conserved quantity is −GM/r0, so
Eq. (5.71) becomes

dr

dτ
= −

√
2GM

(
1

r
− 1

r0

)
= −

√
2GM(r0 − r)

rr0
. (5.72)

This equation can be reduced to a definite integral by bringing all of the r-dependent
factors to one side and integrating:

τ = −
∫ rf

r0

dr

√
rr0

2GM(r0 − r)
. (5.73)

This integral can be carried out, so finally we have an expression for the proper time
τ(rf ) at which the particle is at the radius coordinate rf :

τ(rf ) =

√
r0

2GM

{
r0 tan−1

(√
r0 − rf
rf

)
+
√
rf (r0 − rf )

}
. (5.74)

So, from the point of view of a person riding on the falling particle, the Schwarzschild
horizon will be reached in a finite length of time.

However, if we ask how the trajectory evolves as a function of coordinate time t,
we will see a very different picture. The velocity with respect to coordinate time can be
found by the chain rule:

dr

dt
=

dr

dτ

dτ

dt
=

dr/dτ

dt/dτ
, (5.75)

and then Eq. (5.64) can be used to eliminate dt/dτ :

dr

dt
=

dr/dτ√
h−1(r) + c−2h−2(r)

(
dr
dτ

)2 . (5.76)

It is possible to find an exact solution for t as a function of r, which can be obtained by
using Eq. (5.72) to eliminate dr/dτ from the above equation, and then expressing t as
an integral over r, similar to Eq. (5.73). The result is very cumbersome, however, and
not very illuminating. We are most interested, however, in how Eq. (5.76) behaves when
r is near the horizon, and that behavior can be extracted rather easily. Near the horizon
h(r) approaches zero so h−1(r) blows up, with

h−1(r) =
r

r −RS
≈ RS
r −RS

. (5.77)
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The argument of the square root in the denominator of Eq. (5.76) is then dominated by
the second term, which with Eq. (5.77) gives

dr

dt
≈ c

(
r −RS
RS

)
. (5.78)

Rearranging and integrating to some final r = rf , one finds

t(rf ) ≈ −RS
c

∫ rf dr′

r′ −RS
≈ −RS

c
ln(rf −RS) . (5.79)

Thus t diverges logarithmically as rf → RS , so the object does not reach RS for any finite
value of t. Thus, even though a person falling into a black hole would pass the horizon
in a finite amount of time, from the outside the person will never be seen to reach the
horizon.
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APPENDIX 5A: THE LORENTZ TRANSFORMATION
AND THE LORENTZ-INVARIANT INTERVAL

THE LORENTZ TRANSFORMATION:

The kinematic results of special relativity which were discussed in Lecture Notes
1 — time dilation, Lorentz-Fitzgerald contraction, and the relativity of simultaneity —
can all be neatly summarized in a set of equations called the Lorentz transformation.
These equations relate the coordinates of an event as seen by one inertial observer to the
coordinates of the same event as seen by another inertial observer in relative motion.

The Lorentz transformation can be easily derived from the principles that have al-
ready been established. Suppose that a space ship observer constructs a physical coordi-
nate system by carrying with him an entire network of measuring rods oriented along his
x- and y-axes, as in Fig. 5A.1. He also has a network of clocks. He determines the spatial
coordinates of an event by observing where in this network of measuring rods it occurs,
and he determines the time by reading it from a clock located at the site of the event. We
will refer to these coordinates as x′, y′, and t′, using the primes to distinguish them from
our own coordinate system, which we will continue to call x, y, and t. (To simplify the
discussion I am assuming that everything happens in the 2-dimensional plane spanned
by the x- and y-axes. The z direction can be reinstated very easily, since its properties
are the same as those of the y direction.)

Let us suppose that the moving coordinate system is oriented so that its x′-axis
moves to the right along our x-axis, and the clocks are synchronized so that the clock at
the origin of each system is set to zero at the time when the two origins cross each other.

Notice, that since there is no contraction of the measuring rods that are oriented
perpendicular to the motion, the y-coordinate of an event has the same value in either
frame. This leads to the first transformation equation,

y′ = y . (5A.1)

If there was a third spatial dimension in the problem, one would similarly conclude that
z′ = z.

Suppose now that an event A occurs in our coordinate system at a spacetime point
(x, t), where we will set y ≡ 0 for simplicity. We now wish to calculate the coordinates
as measured by the moving (primed) system. Since y = y′ = 0, the event will occur on
the measuring rod which constitutes the x′-axis of the moving system, so we can for now
ignore the existence of the other measuring rods.

Fig. 5A.2 shows the trajectory of the origin of the primed coordinate system, which
we will call O′. It starts at the origin of our system at t = 0, and then moves to the
right at speed v. The diagram also shows that the moving measuring rod which connects
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Figure 5A.1: A “physical” coordinate frame, made of clocks and measuring rods.

Figure 5A.2: Trajectory of O′, the origin of the primed coordinate system. It starts at
the origin of our system at t = 0, and moves to the right at speed v.

the event A to O′ has length x − vt, when measured in our frame. However, since the
measuring rod is contracted by a factor

γ ≡ 1√
1− β2

, (5A.2)

it follows that the length that one would read off from the rod itself must be γ(x − vt).
Thus,

x′ = γ(x− vt) . (5A.3)
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To determine t′, we must find the time on the moving clock which coincides with the
event A. To do this, consider first the event B which occurs at the same time as event A
in our frame, but which is located at the origin O′ of the moving system. Since the clock
at O′ is synchronized with ours at t = 0 and then runs slowly by a factor of γ, we know
that

t′(B) = t/γ . (5A.4)

However, the clock at B is trailing the clock at A, and therefore the two clocks will not
appear to us to be synchronized. Instead, we have learned that the trailing clock will
read a time that is later than the leading clock by an amount β`o/c, where `o is rest
length of the rod that joins the two clocks. In this case `o = x′ = γ(x− vt), so

t′(A) = t′(B)− βγ(x− vt)
/
c

=
(
1− β2

)
γt− βγ

(x
c
− βt

)
= γ

(
t− vx

c2

)
.

(5A.5)

This completes the derivation of the Lorentz transformation equations, which can be
summarized as follows:

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ
(
t− vx

c2

)
.

(5A.6)

We have already verified that there is no distinction between the moving reference
frame and ours, so that the moving observer observes the same distortion in our measuring
devices that we observe in his. In the formalism of the Lorentz transformation, this fact
is verified by inverting the transformation. That is, the above equations can be solved
to express the unprimed variables in terms of the primed variables. When this exercise
is carried out, it is found that the equations have exactly the same form, except that the
sign of the relative velocity v is reversed.

THE LORENTZ-INVARIANT INTERVAL:

So far we have considered only pulses of light that move either parallel or perpen-
dicular to the direction of motion. However, the Lorentz transformation allows us to
easily verify that the measured speed of light is the same in all directions. To see this,
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consider a spherical light pulse that emanates from the origin. In our system, the wave
front moves at the speed of light and therefore satisfies the equation

x2 + y2 + z2 = c2t2 . (5A.7)

We need to verify that the same equation holds for the coordinates of the wave front in
the primed reference frame. We therefore use the Lorentz transformations to calculate
the quantity

x′2 + y′2 + z′2 − c2t′2 .

When we carry out this somewhat complicated but straightforward calculation, we find
the following remarkable relation:

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2 . (5A.8)

This quantity,
x2 + y2 + z2 − c2t2 ,

is therefore called the “Lorentz invariant interval” between the event (x, y, z, t) and the
origin.

The origin is of course not really a special point, so one can just as well define the
Lorentz invariant interval between any two events A and B:

s2 ≡ (xA − xB)
2

+ (yA − yB)
2

+ (zA − zB)
2 − c2 (tA − tB)

2
. (5A.9)

Although I am calling the Lorentz invariant interval s2, I obviously do not mean to imply
that it is always positive — it can have either sign. I call it s2 only because it has the
units of cm2. If s2 is positive, then the two events are said to be spacelike separated.
In that case, it can be shown that there exists a frame of reference in which the two
events occur at the same time, and the value of s2 represents the square of the distance
between the events in that frame. If s2 is negative, the two events are said to be timelike
separated. In that case there exists a frame of reference in which the two events occur
at the same position, and the value of s2 represents −c2 times the square of the time
separation in that frame. Note also that whenever s2 is negative one can imagine a clock
that moves between the two events at a uniform speed — s2 is then equal to −c2 times
the time interval as measured by the clock. This time interval is sometimes called the
proper time between the two events.
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Lecture Notes 6

BLACK-BODY RADIATION AND

THE EARLY HISTORY OF THE UNIVERSE

INTRODUCTION:

In Lecture Notes 3 and 4 we discussed the dynamics of Newtonian cosmology under
the assumption that mass is conserved as the universe expands. In that case, since the
physical volume is proportional to a3(t), the mass density ρ(t) is proportional to 1/a3(t).
In these lecture notes we will extend our understanding to include the dynamical effects
of electromagnetic and other forms of radiation. Electromagnetic radiation is intrinsically
relativistic (v ≡ c!), so we need to begin by discussing the concepts of mass and energy
in the context of relativity.

According to special relativity, mass and energy are equivalent, with the conversion
of units given by the famous formula,

E = mc2 . (6.1)

When one says that mass and energy are equivalent, one is saying that they are just two
different ways of expressing precisely the same thing. The total energy of any system is
equal to the total mass of the system — sometimes called the relativistic mass — times
c2, the square of the speed of light.

Although c2 is a large number in conventional units, one can still think of it concep-
tually as being merely a unit conversion factor. For example, one can imagine measuring
the mass/energy of an object in either grams or ergs, with

1 gram = 8.9876× 1020 erg , (6.2)

where c2 = 8.9876× 1020 cm2/s2. So one gram is a huge number of ergs. For SI units,

1 kg = 8.9876× 1016 joule = 2.497× 1010 kw-hr. (6.3)

To put this number in perspective, we might compare it to the world power supply, which
is about 1.8×1010 kilowatts, according to the International Energy Agency.* Thus, if we

* Key World Energy Statistics, 2017, http://www.iea.org/
publications/freepublications/publication/KeyWorld2017.pdf. The 2015 annual “Total
Primary Energy Supply” is given as 13,647 million tonnes of oil equivalent (Mtoe), which
in more familiar units is 1.587 × 1014 kW-hr. If this energy production were uniformly
spread over the year, the average power would be 1.811 × 1010 kW. With a 2015 world
population of 7.35 billion people, this corresponds to 2.46 kW per person.

http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf
http://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf


BLACK-BODY RADIATION AND THE EARLY HISTORY OF THE UNIVERSE p. 2

8.286 LECTURE NOTES 6, FALL 2018

could build a machine that would convert 1 kg per hour entirely into energy, its power
output would be about 1.5 times the world’s total power supply. A 15 gallon tank of
gasoline, if it could be converted entirely to energy, would power the world for two and
a half days. Unfortunately, however, it is not so easy: when a uranium-235 nucleus
undergoes fission, for example, only about 0.09% of its mass is converted to energy.

Since c is conceptually a unit conversion factor, many physicists (especially nuclear
and particle physicists) work in unit systems for which c ≡ 1. A common choice is to use
the MeV (106 eV) or GeV (109 eV) as the unit of energy, where

1 eV = 1 electron volt = 1.6022× 10−19 J, (6.4)

and then

1 GeV = 1.7827× 10−27 kg. (6.5)

The mass of a proton is 0.938 GeV.

It will be useful to know some basic properties of the energy-momentum four-vector,
so I will summarize them here. The energy-momentum four-vector is defined by start-
ing with the momentum three-vector (p1, p2, p3) ≡ (px, py, pz), and appending a fourth
component

p0 =
E

c
, (6.6)

so the four-vector can be written as

pµ =

(
E

c
, ~p

)
. (6.7)

As with the three-vector momentum, the energy-momentum four-vector can be defined
for a system of particles as the sum of the vectors for the individual particles. The
motivation for putting the four components together is that the four-vector obeys a
simple transformation law that describes how to calculate the components measured by
an inertial observer in terms of the components measured by another inertial observer
who is moving relative to the first. The transformation law is identical to one that
describes the transformation of the spacetime coordinate vector, xµ = (ct, ~x), known as
the Lorentz transformation. The mass of a particle in its own rest frame is called its rest
mass, which we denote by m0. If the particle moves with velocity ~v, then the relativistic
expressions for its momentum and energy are given by

~p = γm0~v ,

E = γm0c
2 =

√
(m0c2)

2
+ |~p|2 c2 ,

(6.8)
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where as usual γ is defined by

γ =
1√

1− v2

c2

. (6.9)

Like the Lorentz-invariant interval that we discussed with Eq. (5.30), the energy-
momentum four-vector has a Lorentz-invariant square:

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
. (6.10)

For a particle at rest, Eq. (6.8) implies that the energy E0 is given by

E0 = m0c
2 , (6.11)

since ~p = 0. To see the implications of this equation, we can imagine a hydrogen atom,
which is composed of a proton and an electron. If the two particles are started an infinite
distance apart, then the initial total energy is given by Etot = (mp + me)c

2, where we
are defining the zero of potential energy so that it vanishes at infinite separation. As
the particles come together they attract each other, and therefore accelerate. They gain
kinetic energy, and the potential energy becomes negative. If the particles combine to
form a hydrogen atom in its ground state (i.e., its lowest energy state), then an energy
∆E is given off. This energy is called the binding energy of the hydrogen, and has a
value of 13.6 eV. The energy is most commonly given off in the form of photons. (There
is also some kinetic energy associated with the recoil of the hydrogen atom, but the recoil
energy is very small when the rest energy of the recoiling object is large compared to the
energy given off. Here we will ignore the recoil.) The mass mH of the resulting hydrogen
atom is then given by

mH = mp +me −∆E/c2 , (6.12)

where mp is the mass of the proton, and me is the mass of the electron. The rest mass
of the system is reduced by the energy given off, divided by c2. Thus, a small part of the
rest mass of the proton and electron has been converted into other forms of energy.

For a particle in motion, one can define a relativistic mass mrel by

mrel =
E

c2
. (6.13)

Many authors prefer to never introduce the concept of relativistic mass, and it is certainly
not necessary. Since it is defined solely in terms of the energy, anything that can be
thought or said in terms of the relativistic mass of a particle can equally well be expressed
in terms of its energy. However, when one discusses the gravitational field of a system
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including relativistic particles, then the concept of relativistic mass can be useful. The
gravitational field of a single moving particle, according to general relativity, is anisotropic
and rather complicated, but fortunately we will not have to deal with this. However, if
one has a gas of relativistic particles with no net momentum in the frame of interest,
then the gravitational field can be computed as if the particles were at rest, but using the
relativistic mass, as defined by Eq. (6.13). If one adopts the concept of relativistic mass,
then the famous equation E = mc2 can be described by saying that energy and mass are
equivalent, related in all cases by a factor of c2. The concept of relativistic mass is also
useful when discussing the gravitational force that acts on a body. If a gas of relativistic
particles were sealed inside a box, and the box were placed on a scale, then the scale
would register the relativistic mass of the particles in the gas.

THE MASS OF RADIATION:

We are perhaps not used to thinking of electromagnetic radiation as having mass,
but it is well-known that radiation has an energy density. If the energy density is denoted
by u, then the electromagnetic radiation has a relativistic mass density ρ given by

ρ = u/c2 . (6.14)

That is, the formula above describes the amount of relativistic mass (mrel) per unit vol-
ume. According to general relativity, such a mass density contributes to the gravitational
field just like any other mass density.*

To my knowledge nobody has ever actually “weighed” electromagnetic radiation in
any way, but the theoretical evidence in favor of Eq. (6.14) is overwhelming — light
does have mass. Nonetheless, the photon has zero rest mass, meaning that it cannot
be brought to rest. The general relation for the square of the four-momentum reads
p2 = −(m0c)

2, as in Eq. (6.10), so for the photon this becomes p2 = 0. Writing out the
square of the four-momentum leads to the following relation for photons:

|~p |2 − E2

c2
= 0 , or E = c|~p | . (6.15)

In this set of notes we will examine the role which the mass of electromagnetic
radiation plays in the early stages of the universe.

* Authors who avoid the concept of relativistic mass would reach the same conclusion,
but would describe it by saying that the energy density u creates the same gravitational
field as a mass density u/c2.
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RADIATION IN AN EXPANDING UNIVERSE:

If we ignore the interactions of photons, then as the universe expands the photons
travel on geodesics, and their number is conserved. We will learn later that even when we
take into account the emission and absorption of photons by the matter in the universe,
their number is still very accurately conserved during the long period after inflation (to
be discussed later) and before the formation of the earliest stars. As long as the number
is conserved, the number density nγ of photons varies as 1/a3(t) as the universe expands,
just like the number density of nonrelativistic particles:

nγ ∝
1

a3(t)
. (6.16)

Note that the Greek letter γ (“gamma”) is often used to denote the photon, even when
the energy of the photon is far from the range of 104–107 eV that normally characterizes
what are called gamma rays.

Unlike nonrelativistic particles, however, the frequency of each photon is redshifted
as the universe expands, as we learned in Lecture Notes 2. The ratio of the period ∆t at
the time t2 to the period at the time t1 is given by the redshift factor

∆t(t2)

∆t(t1)
≡ 1 + z =

a(t2)

a(t1)
. (6.17)

Since the frequency ν (Greek letter “nu”) of each photon is related to the period by
ν = 1/∆t, the frequency of each photon decreases as 1/a(t) as the universe expands.
According to elementary quantum mechanics, the energy of the photon is related to the
frequency by

E = hν , (6.18)

where h is Planck’s constant (h = 4.136 × 10−15 eV-s). Thus the energy of the photon
decreases as 1/a(t) as the universe expands. The energy density uγ of the radiation is
given by

uγ = nγ Eγ , (6.19)

where Eγ is the mean energy per photon, so

nγ ∝
1

a3(t)
, Eγ ∝

1

a(t)
=⇒ ργ =

uγ
c2
∝ 1

a4(t)
. (6.20)

(Although I have justified this relation with quantum mechanical arguments, it can also
be derived from classical electromagnetic theory. However, in this case the quantum
argument is simpler.)
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THE RADIATION–DOMINATED ERA:

Today the energy density ur in the cosmic background radiation is given approxi-
mately by

ur = 7.01× 10−14 J/m
3
. (6.21)

(Here I have used the subscript “r” for radiation, rather than “γ” for photons, because I
have included both the energy density of photons and the expected density of neutrinos,
which we will talk about later.) To find the corresponding mass density, use

ρr =
u

c2
=

7.01× 10−14
(
kg-m2-s−2

)
m−3

(3× 108 m-s−1)
2

= 7.80× 10−31 kg/m
3

= 7.80× 10−34 g/cm
3
.

(6.22)

This can be compared with the critical mass density ρc, which was calculated in Eq. (3.34):

ρc = 1.88h2
0 × 10−29 g/cm

3
, (3.34)

where
H0 = 100h0 km-s−1-Mpc−1 .

One finds that the fraction Ωr of closure density in radiation is given by

Ωr ≡
ρr
ρc

=
7.80× 10−34 g-cm−3

1.88h2
0 × 10−29 g-cm−3

= 4.15× 10−5 h−2
0 , (6.23)

For h0 = 0.67, one finds Ωr = 9.2× 10−5. This is only a very small fraction, but Ωr was
larger in the past. Since ρr ∝ 1/a4, while the mass density ρm of nonrelativistic matter
behaves as 1/a3, it follows that

ρr/ρm ∝ 1/a(t) . (6.24)

Then density of nonrelativistic matter in our universe (visible and dark matter combined)
gives Ωm ≈ 0.30, so today ρr/ρm ≈ 9.2 × 10−5/0.30 ≈ 3.1 × 10−4. The constant of
proportionality in Eq. (6.24) is then determined, giving

ρr(t)

ρm(t)
=

[
a(t0)

ρr(t0)

ρm(t0)

]
1

a(t)
=
a(t0)

a(t)
× 3.1× 10−4 . (6.25)

Since a(t)→ 0 as t→ 0, the right-hand-side approaches infinity in this limit. Thus there
was a time at which the value of the right-hand-side went through one, and this time is
denoted by teq, the time of radiation-matter equality. We will assume that the universe is
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flat, and that for t > teq we can make the crude approximation that the universe can be
treated as if it were dominated by nonrelativistic matter. This approximation ignores the
effect of radiation for times shortly after teq, and it also ignores the effect of dark energy
(and the consequent acceleration) during the past 5 billion years or so. As discussed in
Lecture Notes 3, during the matter-dominated era the scale factor behaves as a(t) ∝ t2/3.
Thus, writing Eq. (6.25) for t = teq gives

ρr(teq)

ρm(teq)
≡ 1 =

a(t0)

a(teq)
× 3.1× 10−4 . (6.26)

Remembering that a(t0)/a(teq) = 1 + zeq (see Eq. (2.15)), the redshift zeq of matter-
radiation equality is given by

zeq =
1

3.1× 10−4
− 1 ≈ 3200 . (6.27)

If we ignore for now the acceleration that our universe has undergone during the last
5 billion years or so, we can approximate it as a flat matter-dominated universe, with
a(t) ∝ t2/3. This gives teq = 5.5× 10−6 t0, so for t0 = 13.8 Gyr, teq ≈ 75, 000 years. Our
approximations have been crude, but Barbara Ryden quotes a more precise numerical
calculation (on p. 97), where she finds teq ≈ 47, 000 years.

DYNAMICS OF THE RADIATION–DOMINATED ERA:

When we studied the dynamics of a matter-dominated universe (i.e., a universe whose
mass density is dominated by nonrelativistic matter) in Lecture Notes 3, we learned that
the evolution of such a universe can be described by the two Friedmann equations: ȧ

a

2

=
8π

3
Gρ− kc2

a2
(6.28a)(

matter-dominated
universe

)
ä = −4π

3
Gρa , (6.28b)

where a(t) is the scale factor, ρ(t) is the mass density, and an overdot represents differ-
entiation with respect to time t. In such a matter-dominated universe we found that the
mass density behaves as

ρ(t) ∝ 1

a3(t)
(matter-dominated). (6.29)

The three equations above are not independent, but in fact any two of them can be used
to derive the third. For example we can derive Eq. (6.28b) by multiplying Eq. (6.28a) by
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a2 and then differentiating it with respect to time. The resulting equation will contain a
term proportional to ρ̇. Eq. (6.28b) can then be obtained by replacing ρ̇ by

ρ̇ = −3
ȧ

a
ρ (matter-dominated), (6.30)

which can be derived from Eq. (6.29).

For a universe dominated by radiation, we have already learned (see Eq. (6.20)) that

ρ(t) ∝ 1

a4(t)
(radiation-dominated), (6.31)

in contrast to Eq. (6.29). This implies that Eqs. (6.28a) and (6.28b) will no longer be
consistent with each other, since the derivation of Eq. (6.28b) described in the previ-
ous paragraph will give a different result. To correctly describe a radiation-dominated
universe, we will have to reconcile this inconsistency.

While we have not yet used the word, Eq. (6.31) can be viewed as a statement about
the pressure of radiation. Pressure is relevant, because it is the pressure of a gas that
determines how much energy it looses if it expands. Consider, as a thought experiment,
a volume of gas contained in a chamber with a movable piston, as shown below:

Figure 6.1: A piston chamber, used to discuss the effect of pressure on the rate of change
of the energy density of an expanding gas.

We will assume that the piston chamber is small enough so that gravity plays no role
in our thought experiment. Let U denote the total energy of the gas, and let p denote
the pressure. Suppose that the piston is moved a distance dx to the right. (We suppose
that the motion is slow, so that the gas particles have time to respond and to maintain
a uniform pressure throughout the volume.) The gas exerts a force pA on the piston,
so the gas does work dW = pAdx as the piston is moved. The volume increases by an
amount dV = Adx, so dW = p dV . The energy of the gas decreases by this amount, so

dU = −p dV . (6.32)
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It can be shown that this relation is valid whenever the volume of a gas is changed,
regardless of the shape of the volume.

Now consider a homogeneous, isotropic, expanding universe, described by a scale
factor a(t). Let u = ρc2 denote the energy density of the gas that fills it. We will
consider a fixed coordinate volume Vcoord, so the physical volume will vary as

Vphys(t) = a3(t)Vcoord , (6.33)

and the energy of the gas in this region is given by

U = Vphysu . (6.34)

Using these relations, you will show in Problem Set 6 that

d

dt

(
a3ρc2

)
= −p d

dt
(a3) , (6.35)

and then that

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (6.36)

By comparing this equation with the matter-dominated relation of Eq. (6.30), we see
that nonrelativistic matter has zero pressure. This could have been expected, since
nonrelativistic matter means a gas of approximately motionless particles, and we assumed
starting in Lecture Notes 3 that there is no loss of energy when the universe filled with
nonrelativistic matter expands — the energy spreads out as the volume increases, but
otherwise it is not changed. By contrast, you will also show in Problem Set 6 that
radiation, with a mass density that falls off as 1/a4(t), has a pressure given by

p =
1

3
u =

1

3
ρc2 . (6.37)

Thus, the new ingredient that is introduced by radiation, which is causing an inconsis-
tency between Eqs. (6.28a) and (6.28b), is pressure.

The treatment of pressure in general relativity is unambiguous, and the implication
for this situation is simple: the ȧ equation (6.28a) is not modified, but the ä equation
(6.28b) needs to be modified. By accepting Eq. (6.28a) and using Eq. (6.36) for ρ̇, you
will show in Problem Set 6 that Eq. (6.28b) must be modified to read

d2a

dt2
= −4π

3
G

(
ρ+

3p

c2

)
a . (6.38)
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While general relativity might be needed to prove the above equation, Newtonian ar-

guments are sufficient to at least make this result seem extremely plausible. We know that

when the pressure is non-negligible, ρ̇ is given by Eq. (6.36), and that then Eqs. (6.28a)

and (6.28b) become incompatible. One or both of these equations, therefore, must be

modified by the presence of pressure. The two equations are different from each other,

however, in an obvious way. The ä equation is a force equation, as in ~F = m~a, and in fact

we derived it in our Newtonian model by applying ~F = m~a to each particle in the model

universe. The ȧ equation, on the other hand, was derived by finding a first integral of the

ä equation, and therefore looks like a conservation of energy equation. In fact, we showed

in Problem 3, Problem Set 3, that for the Newtonian model with a finite radius Rmax, the

ȧ equation is precisely equivalent to the statement that the total energy of the Newtonian

model universe is fixed. Does it make sense to add a pressure term to a conservation of

energy equation? No, it does not. As a toy problem, we can ask what would happen

if the universe were filled with TNT, and at a certain pre-arranged time little gremlins

throughout the universe ignited the TNT, so the pressure suddenly changed. The pres-

sure change can in principle be very large and fast, but there is no mechanism to cause

any of the other quantities in Eq. (6.28a) to change rapidly. We can consider a small

region of space, in which the velocities associated with the Hubble expansion are all small,

so we can expect that we can trust our Newtonian understanding of how matter should

behave. In that case ρ describes an energy density that cannot change discontinuously,

and a and ȧ describe the positions and velocities of particles, which also cannot change

discontinuously. So, our conclusion is that a term depending on the pressure cannot be

added to Eq. (6.28a), and then Eq. (6.38) follows as a consequence.

Note that Eq. (6.38) is implying something that is perhaps very surprising: the

pressure is contributing to the gravitational acceleration. That is, the pressure as well

as the energy density can act as a source for the gravitational field. We will not make

much use of Eq. (6.38) in the rest of this chapter, as Eq. (6.28a) will be sufficient for most

of our conclusions. But we can keep in mind that Eq. (6.28a) would not be consistent

with ρ(t) ∝ 1/a4(t) if Eq. (6.38) were not true. We will learn later that the pressure

term in Eq. (6.38) can have dramatically new consequences. In particular, we will learn

that pressures, unlike mass densities, can sometimes be negative. Eq. (6.38) implies that

a negative pressure can result in a gravitational repulsion. We believe that the current

acceleration of the universe, which we mentioned briefly in Lecture Notes 3, can be

attributed to the negative pressure of an unidentified material that is called dark energy.

Many of us also believe that the early universe underwent a very brief period of incredibly

rapid acceleration, called inflation, which was also driven by a negative pressure. We will

return to both of these topics in later sets of lecture notes.
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DYNAMICS OF A FLAT RADIATION-DOMINATED UNIVERSE:

As a simple (but important) special case, consider the evolution of a radiation-
dominated universe with k = 0. From Eqs. (6.20) and (6.28a), one has

1

a2

(
da

dt

)2

=
const

a4
, (6.39)

which leads to
da

dt
=

√
const

a
. (6.40)

This equation can be solved by rewriting it as

ada =
√

const dt (6.41)

and then integrating both sides to obtain

1

2
a2 =

√
const t+ const′ . (6.42)

The convention is to choose the zero of time so that a(t) = 0 for t = 0, which implies
that const′ = 0. Thus, the final result can be written as

a(t) ∝
√
t (radiation-dominated) . (6.43)

The Hubble expansion rate H(t) is given by Eq. (2.8), which says that

H(t) = ȧ/a . (6.44)

Combining this equation with Eq. (6.43), one has immediately that

H(t) =
1

2t
(radiation-dominated) . (6.45)

The age of a radiation-dominated universe is therefore related to the Hubble constant
by t = 1

2H
−1. (Recall for comparison that for a matter-dominated flat universe with

a(t) ∝ t2/3, the age is 2
3H
−1.) The horizon distance is given by Eq. (4.7), and the result

here is

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

= 2ct (radiation-dominated) .

(6.46)
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(Recall that this answer is to be compared with 3ct for the matter-dominated universe.)
If one inserts Eq. (6.45) into Eq. (6.28a) (with k = 0, still), one obtains a relation for the
mass density as a function of time:

ρ =
3

32πGt2
. (6.47)

Note that the 1/t2 behavior in the above equation is consistent with what we already
know: ρ ∝ 1/a4(t), and a(t) ∝

√
t.

BLACK–BODY RADIATION:

If a cavity is carved out of any material, and the walls of the cavity are kept at a
uniform temperature T , then the cavity will fill with radiation. Assuming that the walls
are thick enough so that no radiation can get through them, then the energy density (and
also the entire spectrum of the radiation) is determined solely by the temperature T —
the composition of the material is entirely irrelevant. The material is serving solely to
keep the radiation at a uniform temperature. Radiation of this type is generally called
either thermal radiation or black-body radiation.

The motivation for the name “black-body radiation” stems from the fact that a
“black” body in empty space can be shown to emit radiation of exactly this intensity
and spectrum. Here the word “black” is used to describe an object that absorbs all
light that hits it, so there is no reflected light, although there is emission due to thermal
effects. Emission is distinguished from reflection by the fact that reflection is an im-
mediate response to the radiation that is currently hitting the material. To understand
the radiation emitted by a black body, imagine a block of such material inside the cavity
described in the previous paragraph. Since thermal equilibrium has been established, one
concludes that the block at temperature T must emit radiation which precisely matches
the radiation that it is absorbing — otherwise it would either heat up or cool down,
and that would violate the assumption of thermal equilibrium. In fact, not only must
the energy densities match, but the entire spectrum must match — otherwise one could
imagine introducing a frequency-selecting filter that would cause the black body to heat
or cool. That is, if there were any frequency band for which the radiation emitted by the
block did not match the radiation hitting the block, then we could surround the block by
a filter that transmits only in that frequency band, and we would see the block heat up
or cool down. Since objects will never heat up or cool down once thermal equilibrium is
reached, the emitted and absorbed radiation must match in every frequency band. Since
the block is assumed to be black, none of the emitted radiation is reflection, so all of it
is thermal emission that will continue to be emitted even if the block is removed from
the cavity. Thus, a black body will emit radiation with an intensity and a spectrum that
depends only on the temperature, and not on any property of the material other than
the fact that it is black.
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The energy density and other properties of the radiation can be derived using the
standard principles of statistical mechanics, but the derivation will not be included in this
course. However, I will make a few comments about the underlying physics, and then I will
state the results. The rule of thumb for classical statistical mechanics is the “equipartition
theorem,” which says that under certain circumstances (which I will not specify), each
degree of freedom of a system at temperature T acquires a mean thermal energy of 1

2kT .
For example, in a gas of point particles each particle acquires a mean thermal energy of
3
2kT , since motion in the x, y and z directions constitutes three degrees of freedom. For
the system of radiation inside a cavity, each possible standing wave pattern corresponds
to one degree of freedom. In a rectangular cavity, for example, a standing wave can be
described in terms of a polarization, which has two linearly independent values, and a

wave vector ~k, with the wave amplitude proportional to Re{ei~k·~x}. For the standing wave

to exist, each component of ~k must satisfy the condition that the wave amplitude must
vary either an integral or half-integral number of cycles from one side of the cavity to
the other. Thus a standing wave pattern exists only for a discrete set of frequencies.
The discrete set of frequencies is, however, infinite, since there is no upper limit to the
frequency of a standing wave. The number of degrees of freedom is therefore infinite,
and the equipartition theorem cannot be applied. This problem is known as the “Jeans
catastrophe,” and represents an important failure of classical physics. The implications
can be stated as follows: if classical physics were correct, then a region of space containing
an electromagnetic field could never come into thermal equilibrium — instead it would
continue indefinitely to absorb energy from its surroundings, and the energy absorbed
would be used to excite higher and higher frequency standing waves of the field. The
electromagnetic field would be an infinite heat sink, draining away all thermal energy.

Of course the electromagnetic field does not drain away all thermal energy, and the
reason comes from quantum theory. Classically it would be possible to excite a standing
wave by an arbitrary amount, but quantum theory requires that the excitations occur
only by the addition of discrete photons, each with an energy hν, where ν is the frequency
of the standing wave. For cases in which hν � kT , the classical answer is not changed
— such standing waves acquire a mean energy of 1

2kT for each polarization. However,
for those standing waves with hν � kT , the minimum excitation is much larger than the
energy which is classically expected. These modes are then only rarely excited, and the
total energy is convergent.

When the calculation is done quantum mechanically, one finds that black-body elec-
tromagnetic radiation has an energy density given by

u = g
π2

30

(kT )4

(h̄c)3
, (6.48)
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where

k = Boltzmann’s constant = 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K , (6.49)

h̄ =
h

2π
= 1.055× 10−27 erg-sec

= 6.582× 10−16 eV-sec ,

and

g = 2 (for photons) . (6.50)

The factor of g is introduced to prepare for the discussion below of black body radiation
of particles other than photons. g is taken as 2 for photons because the photon has two
possible polarization states. The polarization states can be described as linearly polarized,
or as circularly polarized, depending on one’s choice of basis. In either case, however,
there are two polarizations. A photon traveling along the z-axis can be linearly polarized
in either the x or y directions, or it can have a circular polarization of left or right. The
polarization is related to the intrinsic angular momentum, or spin, of the photon: right
circular polarization corresponds to the spin being aligned with the momentum, while
left circular polarization is the opposite. Thus one could say that g is taken as 2 because
the photon has two spin states.

One also finds that the radiation has a pressure, given by

p =
1

3
u . (6.51)

The number density of photons is found to be

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
, (6.52)

where

ζ(3) =
1

13
+

1

23
+

1

33
+ · · · ≈ 1.202 (6.53)
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is the Riemann zeta function evaluated at 3, and

g∗ = 2 (for photons) . (6.54)

Finally, the radiation has an entropy density s (entropy per unit volume) given by

s = g
2π2

45

k4T 3

(h̄c)3
. (6.55)

We will not need to know the precise meaning of entropy, but it will suffice to say that the
entropy is a measure of the degree of disorder (or uncertainty) in the statistical system.
Entropy is conserved if the system remains in thermal equilibrium, and this assumption
appears to be quite accurate for most processes in the early universe. (The inflationary
process, to be discussed later, is a colossal exception.) When departures from thermal
equilibrium occur, the entropy is monotonically increasing, a principle known as the
second law of thermodynamics.

In the laboratory the only kind of thermal radiation that can be achieved is that of
photons. The radiation in the early universe, on the other hand, is believed to have also
contained neutrinos. During the 20th century these neutrinos were thought to have zero
rest mass, like the photon, but that is no longer the case. We now believe that neutrinos
have a very small but nonzero mass. Nonetheless, as long as m0c

2 � kT , which is
certainly the case throughout the history of the universe, the neutrinos contribute to the
thermal radiation as if they were massless particles.

Besides having a nonzero rest mass, neutrinos differ from photons in another property
which has an important effect on their thermal radiation. The photon belongs to a class of
particles called bosons, and these particles have the property that there is no limit to the
number of particles that can exist simultaneously in a given quantum state. It is precisely
because of this property that the photon can give rise to a classical electromagnetic field.
The field behaves classically because it is composed of huge numbers of photons. The
neutrino, on the other hand, belongs to a class of particles called fermions. For these
particles it is impossible to have more than one particle in a given quantum state at one
time. An electron is also a fermion, and the principle of one electron per quantum state
is sometimes called the “Pauli Exclusion principle.”

In relativistic quantum field theory it is possible to prove the spin-statistics theorem,
which says that the boson/fermion property of a particle is connected to its intrinsic
angular momentum, also called the particle’s spin. If the spin is an integer (in units of
h̄), then the particle must be a boson. The only other possibility is that the spin is half-
integer (more precisely, half-odd-integer, again in units of h̄), in which case the particle
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is a fermion. The proof requires relativistic invariance, so there is no analogous theorem
in nonrelativistic quantum mechanics.

Since fermions obey the Pauli exclusion principle, which is a restriction on the states
that they can occupy, the fact that a particle is a fermion leads to a reduction in the
number of particles that will be present in black-body radiation. The equations that
describe the black-body radiation of fermions have the same form as the equations for
bosons, so the energy density u, the pressure p, the number density n, and the entropy
density s are again described by Eqs. (6.48), (6.51), (6.52), and (6.55) above. The Pauli
exclusion principle, however, causes the factor g to be multiplied by 7/8 if the particle is
a fermion, and the factor g∗ to be multiplied by 3/4.

To find the values of g and g∗ for neutrinos, we must count how many types of
neutrinos exist. While there is only one kind of photon, we believe that there are three
different species, or flavors, of neutrinos: the electron neutrino νe, the muon neutrino
νµ, and the tau neutrino ντ . The existence of the three species causes g and g∗ to be
multiplied by 3. In addition, neutrinos exist as particles and antiparticles, in contrast
to the photon which is its own antiparticle. The particle/antiparticle option leads to a
factor of 2 for both g and g∗. While the photon has two spin states, the neutrino has only
1: neutrinos are left-handed, which means that their spin points in the opposite direction
from their momentum, while antineutrinos are right-handed. Thus the values of g and g∗

for neutrinos are given by

gν =
7

8︸ ︷︷ ︸
Fermion factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
.

g∗ν =
3

4︸ ︷︷ ︸
Fermion factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9

2
.

(6.56)

(6.57)

[One might wonder why neutrinos are not produced when a piece of metal is heated
until it glows. The answer is that neutrinos interact very weakly at these low energies,
and their production rate is totally negligible. Thermal equilibrium neutrino radiation
can in principle be seen at any temperature, but it is very difficult to produce. The
radiation would reach thermal equilibrium only if it were confined to a box opaque to
neutrinos, which means that the walls of the box would have to be much thicker than the
diameter of the earth. In the early universe, however, the temperatures were much higher.
Neutrino interaction rates increase with energy, so in the early universe they interacted
rapidly with the other particles, and were quickly brought to thermal equilibrium.]
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As the temperature is increased, more and more types of particles contribute to the
thermal radiation. Any particle with mc2 � kT will contribute in essentially the same
way as a massless particle. In particular, when kT is much larger than the value of
mc2 for an electron (0.511 MeV), then electron-positron pairs contribute to the thermal
radiation. Electrons and positrons each have two spin states, and they are antiparticles
of each other. They are again fermions, so

ge+e− =
7

8︸ ︷︷ ︸
Fermion factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
.

g∗e+e− =
3

4︸ ︷︷ ︸
Fermion factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

(6.58)

(6.59)

Including photons, three species of neutrinos, and the electron-positron pairs, the total
value of g is given by

gtot = 2 +
21

4
+

7

2
= 10

3

4
. (6.60)

This value is appropriate for values of kT which are larger than 0.511 MeV, but smaller
than 106 MeV (where muons begin to be produced).

THE ENERGY DENSITY OF RADIATION

In Eq. (6.21) we stated an estimate for the energy density in radiation of the cur-
rent universe, which we are now prepared to justify. The value can be calculated in
terms of the current temperature Tγ of the cosmic microwave background. The best
single measurement of Tγ to date was done by the FIRAS (Far InfraRed Absolute Spec-
trophotometer) instrument on the COBE (Cosmic Background Explorer) satellite, which
released its final analysis in 1999,* reporting a value of Tγ = 2.725 ± 0.002 K. In 2009

Fixsen† combined the results of all experiments to date to obtain a value 2.7255± 0.0006
K.

The radiation that exists in the universe today consists of photons and neutrinos. The
energy density is therefore given by Eq. (6.48), using g = 2 for the photon contribution,

* J.C. Mather, D.J. Fixsen, R.A. Shafer, C. Mosier, and D.T. Wilkinson, “Calibrator
Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS),” Astrophysical
Journal, vol. 512, pp. 511–520 (1999), http://arxiv.org/abs/astro-ph/9810373.
† D.J. Fixsen, “The Temperature of the Cosmic Microwave Background,” Astrophys-

ical Journal, vol. 707, pp. 916–920 (2009), http://arxiv.org/abs/arXiv:0911.1955.

http://arxiv.org/abs/astro-ph/9810373
http://arxiv.org/abs/arXiv:0911.1955
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and g = 21/4 for the neutrino contribution, as given by Eq. (6.56). There is a further
complication, which you explore in Problem Set 7: the temperature Tν of the neutrinos
is not the same as the temperature Tγ of the photons, but instead

Tν =

(
4

11

)1/3

Tγ , (6.61)

This temperature differential is established as the e+e− pairs disappear from the thermal
equilibrium mix, as kT falls below the electron rest energy of 0.511 MeV. The asymmetry
results from the fact that the neutrinos interact too weakly to absorb any significant
amount of the energy from the e+e− pairs, so all the energy goes into heating the photons
relative to the neutrinos. Combining the two contributions to the energy density,

urad,0 =

[
2 +

21

4

(
4

11

)4/3
]
π2

30

(kTγ)
4

(h̄c)3

= 7.01× 10−14 J/m
3
,

(6.62)

in agreement with Eq. (6.21).

NEUTRINO MASSES:

The fact that neutrinos have mass has become known only relatively recently, and
we still do not know what the masses are. The status of particle data is tallied by the
Particle Data Group at Lawrence Berkeley Laboratory, which can be found on the web at
http://pdg.lbl.gov/. In 1996 the Particle Data Group reported that there is “no direct,
unconstested evidence for massive neutrinos,” while in 1998 it added that suggestive
evidence had been found. In 2000 the evidence was “rather convincing,” and by 2002 the
evidence had become “compelling.”

The evidence remains indirect, however. The mass of a neutrino has never been
measured, but instead the existence of a nonzero mass is inferred from the fact that we
see neutrinos “oscillate” from one species to another. For many years it was a mystery
why we do not detect as many neutrinos from the Sun as is expected, but we are now
convinced that the deficit is caused by the fact that the electron neutrinos produced in
the Sun can oscillate to become muon or tau neutrinos, which are much harder to detect.
The muon and tau neutrinos can now be detected by the Sudbury Neutrino Observatory
buried 2100 m underground in a mine near Sudbury, Ontario, and by SuperKamiokande,
buried 1000 m in a mine at Hida-city, Gifu prefecture, Japan. In addition, starting in 1998,
experiments at SuperKamiokande and other locations have found that muon neutrinos
produced by cosmic ray collisions in the upper atmosphere can undergo oscillations into
other species before reaching the ground. The 2015 Nobel Prize in Physics was awarded

http://pdg.lbl.gov/
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to Takaaki Kajita and Arthur McDonald “for the discovery of neutrino oscillations, which
shows that neutrinos have mass.”

Such oscillations would not be possible if the neutrinos were massless, essentially
because a massless particle experiences an infinite time dilation, so time effectively stops.
A massless particle in vacuum cannot do anything except travel at the speed of light. The
measurements of the oscillations do not allow a determination of the mass, but instead
allow one to infer the differences between the squares of the masses. As of 2016, the
Particle Data Group reports

∆m2
21 c

4 = (7.53± 0.18)× 10−5 eV2 ,

∆m2
32 c

4 = (2.44± 0.06)× 10−3 eV2 ,

or

∆m2
32 c

4 = (2.51± 0.06)× 10−3 eV2 , (6.63)

where the two options for ∆m2
32 depend on assumptions about the ordering of the masses.

The masses are labeled 1, 2, and 3, which are related to the better-known flavor labels νe,
νµ, and ντ in a complicated way. The PDG also reports that the rest energy of each type
of neutrino is known to be less than 2 eV. The flavor labels νe, νµ, and ντ indicate how
the neutrinos are produced, but in the peculiar context of quantum theory these states
do not have a well-defined mass. Instead each state of definite mass is a superposition of
different flavor states, and vice versa. Although these issues are fascinating, we will not
have cause to pursue them any further. If you have not studied quantum theory you will
probably have no idea what the last few sentences mean, and that is okay as far as this
course is concerned.

Nonetheless, the presence of any mass for the neutrino, no matter how small, raises an
important question about the counting of spin states, which is important in our formulas
for the black-body radiation of neutrinos. The bottom line will be that the mass makes
no difference, but the reasoning is not simple.

We said above that the neutrino has one spin state, because neutrinos are always
left-handed: their spin points in the opposite direction from their momentum. If the
neutrino were massless, this statement could be precisely true. It can be shown that
for massless particles, if the statement is true for one observer, then the spin and the
momentum measured by any other observer would align in the same way. Thus, if the
neutrino were massless, its left-handedness would be a relativistically invariant property.
While it is difficult to prove this invariance, it is easy to see that the invariance fails if the
mass of the neutrino is not zero. For definiteness, consider a left-handed neutrino moving
along the z axis in the positive direction, so its spin points in the negative z direction.
If it has a nonzero mass then it moves slower than the speed of light, so we can always
imagine an observer who moves faster, also along the z axis in the positive direction.
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To the moving observer the neutrino will be moving in the negative z direction, but the
spin will still point along the negative z direction. Hence, the moving observer will see a
right-handed particle. But what is this mysterious right-handed particle? Is this a new
spin state that must be counted in our calculations of black-body radiation?

We do not yet have a unique theory of neutrino masses, but there are two possibilities.
The neutrino might have a Majorana mass, in which case the mysterious right-handed
particle in the above thought experiment would be an ordinary antineutrino. Since the
antineutrino has already been included in the black-body formulas, they will not be
changed. The other possibility is that the neutrino can have a Dirac mass, which would
be the same type of mass that an electron has. In that case, the mysterious right-handed
particle in the thought experiment would be a new spin state of the neutrino. The
statement that neutrinos are always left-handed would be blatantly false. Nonetheless,
our theories would allow us to calculate the strength of the interactions of these right-
handed neutrinos, and they would be incredibly weak. They would be so weak that they
would essentially never be produced in the early inverse, so again our black-body formulas
would not require modification.

THERMAL HISTORY OF THE UNIVERSE:

We now have all the ingredients necessary to calculate the temperature of the universe
as a function of time. Eq. (6.47) gives the mass density as a function of time, and
Eq. (6.48) relates the energy density to the temperature. Recalling that u = ρc2, one can
combine these relations and solve for the temperature as a function of time:

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
. (6.64)

To find the temperature at 1 sec after the big bang, we now need only plug in numbers:

kT =

[
45
(
1.055× 10−34 J-s

)3 (
2.998× 108 m-s−1

)5
16π3(10.75)

(
6.673× 10−11 m3-kg−1s−2

) ]1/4

× 1

(1 s)
1/2
×
(

1 J

kg-m2-s−2

)1/4

= 1.378× 10−13 J ,

where the factor (1 erg/gm-cm2-sec−2)1/4 is equal to 1, and has been inserted to convert
the units to the desired form. Using 1 eV = 1.602× 10−12 erg, one can convert this result
if one wishes to

kT = 0.860 MeV .
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Since one knows that T ∝ t−1/2, one can write down a general expression for the time-
temperature relation, for 0.511 MeV� kT � 106 MeV, as

kT =
0.860 MeV√
t (in sec)

, (6.65a)

or equivalently

T =
9.98× 109 K√
t (in sec)

. (6.65b)

As an example one can use Eq. (6.65b) to calculate the temperature of the universe
at the end of the first seven days. (Here we are making a minor error, since the value
gtot = 10 3

4 is not appropriate when kT falls below 0.5 MeV.) One finds T ≈ 1.3× 107 K,
which is roughly the temperature which is believed to exist in the core of a bright star.

RELATIONSHIP BETWEEN a AND T :

When a gas of black-body radiation expands in thermal equilibrium, there is a simple
relationship between the scale factor a and the temperature T . We have already seen that
the energy density ρ ∝ 1/a4, and that ρ ∝ T 4. It follows that the product aT remains
constant as the universe expands. The constancy of aT is actually a direct consequence of
statistical mechanics, and has nothing to do with the dynamics of the expanding universe.
As long as the expansion of the universe is slow enough so that the radiation stays in
thermal equilibrium, which it is, then the entropy of the expanding gas remains constant.
According to Eq. (6.55) the entropy density is proportional to gT 3, so the total entropy
S contained in a fixed region in the comoving coordinate system obeys the relation

S = sVphys = sa3(t)Vcoord ∝ ga3T 3 , (6.66)

where Vcoord is the coordinate volume of the region. As long as g does not change,
then the conservation of entropy implies that aT remains constant. Eq. (6.66) allows us
to also understand what happens when g does change, which happens when there is a
change in the kinds of particles that contribute to the black-body radiation. For example,
when kT falls below 0.5 MeV and the electron-positron pairs disappear from the thermal
equilibrium mix, the entropy that had been contained in the electron-positron component
of the gas must be given to the other components. However, at this point the neutrinos
have decoupled, which means that they are no longer undergoing significant interactions
with the rest of the gas. The entropy from the electron-positron pairs is therefore given
entirely to the photons, and essentially none is given to the neutrinos. The photons are
heated relative to the neutrinos, and they continue to be hotter than the neutrinos into
the present era. On Problem Set 7 you will show that this transfer of entropy from the
electron-positron pairs to the photons increases the quantity aTγ , where Tγ is the photon

temperature, by a factor of (11/4)
1/3

= 1.40.
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RECOMBINATION AND DECOUPLING:

The observed baryonic matter in the universe — the matter made of protons, neu-
trons, and electrons — is about 80% hydrogen by mass. Most of the rest is helium, with
an almost negligible amount of heavier elements. One can use statistical mechanics to
understand the behavior of this hydrogen under the conditions prevalent in the early
universe, but I will not attempt such a calculation in this course. As one might guess,
hydrogen will ionize (i.e. break up into separate protons and electrons) if the temperature
is high enough. The temperature necessary to cause ionization depends on the density,
but for the history of our universe one can say that the hydrogen is ionized when T is
greater than about 4, 000 K.

Thus, when the temperature falls below 4, 000 K, the ionized hydrogen coalesces into
neutral atoms. The process is usually called “recombination,” although I am at a loss
to explain the significance of the prefix “re-”. When recombination occurs, the universe
becomes essentially transparent to photons. The photons cease to interact with the other
particles, and this process is called “decoupling”. Decoupling occurs slightly later than
recombination, at a temperature of about 3, 000 K, since even a small residual density of
free electrons is enough to keep the photons coupled to the other particles. The photons
which we observe today in the cosmic background radiation are photons which for the
most part have last scattered at the time of decoupling.

We can estimate the time of decoupling by using the constancy of aT . Here T
indicates the temperature of the photons, since the neutrinos have decoupled and are not
relevant to the current discussion. It is very accurate to assume that aT has remained
constant from the time of decoupling to the present, since the photons are not interacting
significantly with anything else, so the conservation of photon entropy implies that a3sγ ∝
a3T 3 is constant. Using the subscript d to denote quantities evaluated at the time of
decoupling, and subscript 0 to denote quantities evaluated at the present time, one has

adTd = a0T0 , (6.67)

from which one has immediately that

ad
a0

=
T0

Td
. (6.68)

Assuming that the universe is flat, and making the crude approximation that it can be
treated as matter-dominated from td to the present, one has a(t) ∝ t2/3 and

(
td
t0

)2/3

=
T0

Td
. (6.69)
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Solving, one has

td =

(
T0

Td

)3/2

t0

≈
(

2.7 K

3000 K

)3/2

×
(
13.7× 109 yr

)
≈ 370, 000 yr .

(6.70)

On p. 159, Ryden quotes a more accurate numerical calculation, giving td ≈ 350, 000 yr.

THE SPECTRUM OF THE COSMIC BACKGROUND RADIATION:

The cosmic background radiation was discovered by Penzias and Wilson in 1965.
They measured at one frequency only, but found that the radiation appeared to be
coming uniformly from all directions in space. This radiation was quickly identified by
Dicke, Peebles, Roll, and Wilkinson as the remnant radiation from the big bang. Since
then the measurement of the cosmic background radiation has become a minor industry,
and much data has been obtained about the spectrum of the radiation and about its
angular distribution in the sky.

The prediction from big bang cosmology is that the spectrum should be thermal,
corresponding to black-body radiation that has been redshifted from its initially very
high temperature. It is a peculiar feature of the black-body spectrum that it maintains
its thermal equilibrium form under uniform redshift, even though the photons in the
radiation are noninteracting. That is, if each photon in the black-body probability dis-
tribution is redshifted by the same factor, the net effect is to produce a new probability
distribution which is again of the black-body form, except that the temperature is modi-
fied by a factor of the redshift. Thus, the redshift reduces the temperature, but does not
lead to departures from the thermal equilibrium spectrum.

The ideal Planck spectrum for such radiation has an energy density ρν(ν)dν, for
radiation in the wavelength interval between ν and ν + dν, given by

ρν(ν)dν =
16π2h̄ν3

c3
1

e2πh̄ν/kT − 1
dν . (6.71)

The subscript ν on ρν indicates that it is the energy density per frequency interval,
while one could alternatively speak of the energy density per wavelength interval, ρλ.
(As with the other statistical mechanics results in this set of Lecture Notes, we will use
Eq. (6.71) without derivation.) Observers usually do not directly measure the energy
density, however, but instead measure the intensity of the radiation. It can be shown
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that the power hitting a detector per frequency interval per area of aperature per solid
angle of aperture is given by

Iν(ν) =
c

4π
ρν(ν) =

4πh̄ν3

c2
1

e2πh̄ν/kT − 1
. (6.72)

The data on the spectrum available in 1975 is summarized on the two graphs on
the following page. The graphs show measurements of the energy density in the cosmic
background radiation at different frequencies (or wavelengths). The lower horizontal axis
shows the frequency in gigahertz (109 cycles per second), and the upper horizontal axis
shows the corresponding wavelength. The solid line is the expected blackbody distribu-
tion, shown for the best current determination of the temperature, 2.726 K. Part (a)
shows the low frequency measurements, including those of Penzias & Wilson and Roll
& Wilkinson (which was published about 6 months after the Penzias & Wilson result).
Part (b) includes the full range of interesting frequencies. The circles show the results
of each measurement, and the bars indicate the range of the estimated uncertainty. The
measurements with small uncertainties are shown with dark shading. A high-frequency
broad-band measurement is shown on part (b), labeled “1974 Balloon” — the measured
energy density is shown as a solid line, and the estimated uncertainty is indicated by gray
shading. The 1971 balloon measurements were taken by the MIT team of Dirk Muehlner
and Rainer Weiss. (The energy density on both graphs is measured in electron volts per
cubic meter per gigahertz.)

The earth’s atmosphere poses a serious problem for measuring the high frequency
side of the curve, so the best measurements must be done from balloons, rockets, or
satellites. In 1987 a rocket probe was launched by a collaboration between the University
of California at Berkeley and Nagoya University in Japan. The resulting paper* included
a graph of the remarkable data shown in Figure 6.3.

Note that the points labeled 2 and 3 are much higher than the black body spectrum
predicts. Using each of these points individually to determine a temperature, the authors
find:

Point 2: T = 2.955± 0.017 K
Point 3: T = 3.175± 0.027 K

These numbers correspond to discrepancies of 12 and 16 standard deviations, respectively,
from the temperature of T = 2.74 K that fits the lower frequency points. In terms of
energy, the excess intensity seen at high frequencies in this experiment amounts to about

* T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A.E. Lange, and
P.L. Richards, “The Submillimeter Spectrum of the
Cosmic Background Radiation,” Astrophysical Journal, vol. 329, pp. 567–571 (1988),
http://adsabs.harvard.edu/abs/1988ApJ...329..567M.

http://adsabs.harvard.edu/abs/1988ApJ...329..567M
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Figure 6.2: The spectrum of the cosmic microwave background as it was known in 1975.
Each graph shows the energy density of the radiation, in electron volts per cubic meter
per gigahertz, as a function of frequency. Part (a) shows the lowest frequencies, which
include the original measurement of Penzias and Wilson, while part (b) includes the full
range of interesting frequencies. The curve shows the black-body spectrum for 2.726 K.
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Figure 6.3: Three data points in the CMB spectrum measured by the Berkeley-Nagoya
rocket experiment in 1987. Point (3) differs from the theoretically expected curve by 16
standard deviations. The lesson, apparently, is that one should not reject a previously
successful theory until the evidence against it is reliably confirmed.

10% of the total energy in the cosmic background radiation. Cosmologists were stunned
by the extremely significant disagreement with predictions. Some tried to develop theories
to explain the radiation, without much success, while others banked on the theory that it
would go away. The experiment looked like a very careful one, however, so it was difficult
to dismiss. The most likely source of error in an experiment of this type is the possibility
that the detectors were influenced by heat from the exhaust of the launch vehicle — but
the experimenters very carefully tracked how the observed radiation varied with time as
the detector moved away from the launch rocket, and it seemed clear that the rocket was
not a factor.

The same group tried to check their results with a second flight a year later, but the
rocket failed and no useful data was obtained.

In the fall of 1989 NASA launched the Cosmic Background Explorer, known as
COBE (pronounced “koh-bee”). This marked the first time that a satellite was used
to probe the background radiation. Within months, the COBE group announced their
first results at a meeting of the American Astronomical Society in Washington, D.C.,
January 1990. The data was so spectacular that the audience rose to give the speaker,
John Mather, a standing ovation. The detailed preprint, with a cover sheet showing a
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sketch of the satellite, was released the same day, and later published as an Astrophysical
Journal letter.*

The data showed a perfect fit to the blackbody spectrum, with a temperature of
2.735± 0.06 K, with no evidence whatever for the “submillimeter excess” that had been
seen by Matsumoto et al. The data was shown with estimated error bars of 1% of the
peak intensity, which the group regarded as very conservative. The graph is reproduced
here as Fig. 6.5.

Figure 6.5: The original (1990) COBE measurement of the spectrum of the cosmic
microwave background, based on only 9 minutes of data. The vertical axis shows the
energy density in units of electron volts per cubic meter per gigahertz.

Once again, the vertical axis is calibrated in electron volts per cubic meter per gigahertz.

Since the COBE instrument is far more precise and has more internal consistency
checks, there has been no doubt in the scientific community that the COBE result su-
percedes the previous one. Despite the 16σ discrepancy of 1988, the cosmic background
radiation is now once again believed to have a nearly perfect black-body spectrum.

In January 1993, the COBE team released its final data on the cosmic background
radiation spectrum. The first graph had come from just 9 minutes of data, but now the

* J.C. Mather et al., “A preliminary measurement of the cosmic microwave background
spectrum by the Cosmic Background Explorer (COBE) satellite,” Astrophysical Journal,
vol. 354, pp. L37–L40 (1990), http://adsabs.harvard.edu/abs/1990ApJ...354L..37M.

http://adsabs.harvard.edu/abs/1990ApJ...354L..37M
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Figure 6.4: The cover page of the original preprint of the
COBE cosmic microwave background spectrum measurement.
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team had analyzed the data from the entire mission. The error boxes were shrunk beyond
visibility to only 0.03%, and the background spectrum was still perfectly blackbody, just
as the big bang theory predicted. The new value for the temperature was just a little
lower, 2.726 K, with an uncertainty of less than 0.01 K.

The perfection of the spectrum means that the big bang must have been very simple.
The COBE team estimated that no more than 0.03% of the energy in the background
radiation could have been released anytime after the first year of the life of the universe,
since energy released after one year would not have had time to reach such a perfect state
of thermal equilibrium. Theories that predict energy release from the decay of turbulent
motions or exotic elementary particles, from a generation of exploding or massive stars
preceding those already known, or from dozens of other interesting hypothetical objects,
were all excluded at once.

Although a few advocates of the steady state universe have not yet given up, the
COBE team announced that the theory is ruled out. A nearly perfect blackbody spectrum
can be achieved in the steady state theory only by a thick fog of objects that could
absorb and re-emit the microwave radiation, allowing the radiation to come to a uniform
temperature. Steady state proponents have in the past suggested that interstellar space
might be filled by a thin dust of iron whiskers that could create such a fog. However, a
fog that is thick enough to explain the new data would be so opaque that distant sources
would not be visible.

In this chapter we have discussed mainly the spectrum of the cosmic microwave
background (CMB). Starting in 1992, however, with some preliminary results from the
COBE satellite, astronomers have also been able to measure the anisotropies of the CMB.
This is quite a tour de force, since the radiation is isotropic to an accuracy of about 1 part
in 105. Since the photons of the CMB have been travelling essentially on straight lines
since the time of decoupling, these anisotropies are interpreted as a direct measure of the
degree of nonuniformity of the matter in the universe at the time of decoupling, about
380,000 years after the big bang. These non-uniformities are crucially important, because
they give us clues about how the universe originated, and because they are believed to
be the seeds which led to the formation of the complicated structure that the universe
has today. We will return to discuss the physics of these nonuniformities near the end of
the course.

The Nobel Prize in Physics 2006 was awarded jointly to John C. Mather and George
F. Smoot “for their discovery of the blackbody form and anisotropy of the cosmic mi-
crowave background radiation.”
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Lecture Notes 7

THE COSMOLOGICAL CONSTANT

INTRODUCTION:

Much excitement has been generated since January 1998 over observations that show
that the expansion of the universe today is accelerating, rather than decelerating. Two
groups of astronomers,* with a total of 52 astronomers in the two groups, have reported
evidence for such an acceleration, based on observations of distant (z <∼ 1) Type Ia
supernova explosions, which are used as standard candles. (Note that “Ia” is pronounced
“one-A,” not “eeya.”) The first announcement was made at the AAS meeting in January
of 1998, leading to news articles in Science on January 30 and February 27, 1998, and
in The New York Times on March 3, March 8, April 21, and May 5, 1998. On May
15 one of the two groups (the The High Z Supernova Search Team) posted a paper on
the web titled “Observational Evidence from Supernovae for an Accelerating Universe
and a Cosmological Constant”.† The other group (The Supernova Cosmology Project)
submitted its findings to the web on December 8, 1998.‡ Science magazine officially
proclaimed this to be the “Breakthrough of the Year” for 1998. In 2011, these discoveries
were recognized with the awarding of the Nobel Prize in Physics to Saul Perlmutter, Brian
Schmidt, and Adam Riess, and in 2015 the Fundamental Physics Prize was awarded to
the same three group leaders, and also to the two entire teams.

The evidence for a cosmological constant has stood up firmly for the twenty years
since 1998, and in fact it has gotten significantly stronger. Many cosmologists including
me were skeptical in 1998, but now essentially all of us are convinced that the expansion of
the universe is accelerating. The simplest explanation is that the universe has a nonzero
cosmological constant. An alternative explanation is something called quintessence, which
has very nearly the same effect. (Quintessence refers to a slowly evolving scalar field that

* One group is the Supernova Cosmology Project, based at Lawrence Berkeley Labo-
ratory and headed by Saul Perlmutter. Their web page is

http://www-supernova.lbl.gov/
The other group is the The High Z Supernova Search Team, led by Brian Schmidt, with
web page

http://www.cfa.harvard.edu/supernova//HighZ.html.
† http://arXiv.org/abs/astro-ph/9805201, later published as Riess et al., Astronomical

Journal 116, No. 3, 1009 (1998).
‡ “Measurements of Ω and Λ from 42 High-Redshift Supernovae,”

http://arXiv.org/abs/astro-ph/9812133, later published as Perlmutter et al., Astrophys-
ical Journal 517:565–586 (1999).

http://www-supernova.lbl.gov/
http://www.cfa.harvard.edu/supernova//HighZ.html
http://arXiv.org/abs/astro-ph/9805201
http://arXiv.org/abs/astro-ph/9812133
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permeates the universe and fills it with a nearly uniform energy density — we’ll get back
to that idea when we talk about inflation near the end of the course.) Since no one is sure
what exactly is driving this acceleration, the term “dark energy” has been invented to
describe the stuff that is driving the acceleration, whatever it might be. A cosmological
constant is the simplest explanation, and that is what will be discussed in this set of
lecture notes.

BACKGROUND:

The cosmological constant was first proposed by Albert Einstein in 1917, when he
was trying for the first time to apply his newly invented theory of general relativity to
the universe as a whole.* At the time he believed that the universe was static, since it
appeared static and there was no evidence to the contrary. However, when he worked out
the consequences of his theory, he discovered the result that we found in Lecture Notes
6, Eq. (6.38):

d2a

dt2
= −4π

3
G

(
ρ+

3p

c2

)
a , (7.1)

where a is the scale factor, t is time, G is Newton’s gravitational constant, ρ is the mass
density, p is the pressure, and c is the speed of light. Taking ρ > 0 and p ≈ 0, Einstein
was forced to the conclusion that d2a/dt2 < 0, so a static (a = constant) solution did
not exist. The problem, essentially, was that gravity is an attractive force, so an initially
static universe would collapse.

Einstein’s solution was to modify what we call the Einstein field equations — the
equations that describe how gravitational fields, in the form of spacetime curvature,
are created by matter. He called the new term the cosmological term, because it was
motivated by the cosmological argument that it was needed to allow a static universe.
The cosmological term could create a repulsive force that could be adjusted in strength
so that it could have just the right value to prevent the universe from collapsing. The
coefficient of this term was called the cosmological constant and assigned the symbol Λ
(capital Greek lambda).

Einstein’s static model seemed viable for about a decade, but during the 1920s
astronomers discovered that the universe was not static after all. In 1929 Edwin Hubble
published his famous paper announcing what we now know as Hubble’s law. Einstein was
quick to accept Hubble’s findings, and discarded his cosmological term as unwarranted.

* “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie” (“Cosmological
Considerations on the General Theory of Relativity,”) by A. Einstein, Sitzungsberichte
der Preussichen Akad. d. Wissenschaften, pp. 142–152, 1917. An English translation is
available in The Principle of Relativity, translated by W. Perrett and G.B. Jeffery,
Dover Publications, 1952, and also in Cosmological Constants, edited by Jeremy
Bernstein and Gerald Feinberg, Columbia University Press, 1986.
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COSMOLOGICAL EQUATIONS WITH A COSMOLOGICAL CON-
STANT:

Although Einstein did not look at the cosmological constant this way, from a modern
perspective the cosmological constant is interpreted as an energy density attributed to
the vacuum. That is, the cosmological term in the Einstein field equations is identical to
the term that would be added to describe the effect of a nonzero vacuum energy density.
Since everything that we see can be described as particles moving through the vacuum,
the vacuum energy density becomes a uniform contribution to the total energy, at all
points in space and at any time. The relation between Einstein’s original symbol Λ and
the vacuum energy density uvac, or the vacuum mass density ρvac, is given by

uvac = ρvacc
2 =

Λc4

8πG
. (7.2)

Einstein’s constant Λ has the units of (length)−2, while uvac and ρvac of course have the
usual units for energy density and mass density. The pressure that corresponds to this
vacuum energy can be obtained by applying the equation of energy conservation, using
the fact that the energy density of the vacuum is fixed. On Problem 4 of Problem Set 6
we learned that conservation of energy in a Robertson-Walker universe takes the form

d

dt

(
a3ρc2

)
= −p d

dt
(a3) , (7.3)

or equivalently

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, (7.4)

where the overdot denotes a time derivative. Setting ρ̇vac = 0 gives

pvac = −ρvacc2 = − Λc4

8πG
. (7.5)

The relation between the pressure and energy density is the same as the relation that
we will later discuss for the false vacuum that is responsible for driving the accelerated
expansion of the inflationary universe model. From Eq. (7.1), one can see that a negative
pressure can drive an acceleration. We must add the contributions of the vacuum energy
density and pressure to the right-hand side, so for clarity we will use the symbols ρn and
pn to denote the mass density and pressure of normal matter, where normal refers to all
forms of energy other than the cosmological constant. One then has

d2a

dt2
= −4π

3
G

(
ρn +

3pn
c2

+ ρvac +
3pvac
c2

)
a

= −4π

3
G

(
ρn +

3pn
c2
− 2ρvac

)
a ,

(7.6)



THE COSMOLOGICAL CONSTANT p. 4

8.286 LECTURE NOTES 7, FALL 2018

where we used Eq. (7.5) to eliminate pvac.

We learned in Lecture Notes 6 that the first order Friedmann equation is not modified
by pressure, so it is still written as it was first written, as Eq. (3.31): ȧ

a

2

=
8π

3
Gρ− kc2

a2
. (7.7)

Since the right-hand side depends only on ρ, we find the contribution of the vacuum
energy density by replacing ρ by ρn + ρvac: ȧ

a

2

=
8π

3
G(ρn + ρvac)−

kc2

a2
. (7.8)

Using Eqs. (7.6) and (7.8), we can be more precise about what it means to live in
an accelerating universe. From Eq. (7.6), we see that ä can be positive if the ρvac term
is positive and dominates the right-hand side, so under these circumstances one says
that universe accelerates, meaning that the function a(t) accelerates. Since the physical
distance `p to a galaxy at coordinate distance `c is given by

`p(t) = a(t)`c ,

we see that in an accelerating universe, the relative velocity between galaxies increases
with time.

On the other hand, from Eq. (7.8) we see that this acceleration does not necessarily
mean that H increases with time. We can more easily see the behavior of Eq. (7.8) if we
replace ρn by ρm + ρrad, where ρm is the mass density of nonrelativistic (pressureless)
matter and ρrad is the mass density of radiation: ȧ

a

2

=
8π

3
G ( ρm︸︷︷︸
∝ 1

a3(t)

+ ρrad︸ ︷︷ ︸
∝ 1

a4(t)

+ρvac)−
kc2

a2
. (7.9)

For an open (k < 0) or flat (k = 0) universe, the right-hand side of Eq. (7.9) contains only
positive terms, each of which decreases as the universe expands. Thus H decreases mono-
tonically in such a universe, even if the universe is accelerating. The matter, radiation,
and curvature terms all approach zero as a→∞, so asymptotically

H =
ȧ

a
−−−−→

a→∞

√
8π

3
Gρvac from above. (7.10)

Note that H = ȧ/a can decrease even when ȧ is increasing, as long as a is increasing
faster. For a closed universe (k > 0) it is possible for H to increase as the universe
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expands, but this happens only if the last term of Eq. (7.9) is large enough in magnitude
so that it dominates the rate of change of H. Our universe could be closed, but the last
term of Eq. (7.9) is known to be small, so H for our universe is certainly decreasing. The
recession velocity of any distant galaxy is accelerating, but H = v/`p can still decrease
with time if `p increases faster than v does. If it is true that the acceleration is caused by
vacuum energy density, then Eq. (7.10) describes the asymptotic future of our universe,
whether it is open, closed, or precisely flat. However, we should certainly keep in mind
that predictions about the infinite future are very dicey. It is possible, for example, that
the state that we call the vacuum might not really be stable, but might instead decay
into a lower energy state after 101000 years, falsifying our prediction.

THE COSMOLOGICAL CONSTANT AND THE AGE OF THE UNI-
VERSE:

One effect of a positive cosmological constant is an increase in the age of the universe
that is inferred from a given value of the Hubble constant. This effect can be understood
qualitatively by remembering that the cosmological constant causes the universe to accel-
erate. Suppose, then, that we calculated the age of the universe as we learned in Lecture
Notes 4, assuming that there was no cosmological constant. Then suppose that we add
a vacuum energy term, keeping fixed the current value of the Hubble expansion rate H0

and the current mass density of nonrelativistic matter and radiation. The new energy
contribution adds a positive term to ä, which means that H has not been falling as fast
as it had in the previous ρvac = 0 calculation. Then, as can be seen from the following
sketch,

Figure 7.1: Sketch of the Hubble expansion rate H
vs. time t, illustrating the difference between a model
with and without vacuum energy density.

the Hubble expansion rate in the past would be lower in the new calculation than it was
in the first calculation. The slower decrease in H would mean that it takes longer for H
to reach its present value, since in both models H starts at infinity at the instant of the
big bang. Similarly, the lower value of H in the past would mean that it takes longer
for the universe to reach its present mass density. Thus, the new calculation implies a
universe which is older than we had calculated in the absence of a cosmological constant.
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Quantitatively, we can calculate the age of the universe from Eq. (7.9). To be
completely explicit about the time-dependence of each term, we write

ρm(t) =

[
a(t0)

a(t)

]3
ρm,0

ρrad(t) =

[
a(t0)

a(t)

]4
ρrad,0

ρvac(t) = ρvac,0 .

(7.11)

Here we are using the convention that a subscript 0 denotes the present value of any
quantity, so for example ρm,0 denotes the present value of the mass density of nonrela-
tivistic matter. Each of the above equations reflects the known dependence on a(t) for
each contribution to the mass density, with the constant of proportionality written so
that ρX(t0) = ρX,0, for each type of matter X. Mass densities are usually tabulated as
fractions of the critical density,

ρc =
3H2

8πG
, (7.12)

using the convention that for each type of mass density X,

ΩX ≡ ρX/ρc . (7.13)

So, we rewrite Eqs. (7.11) by replacing each ρX,0 by ΩX,0ρc,0:

ρm(t) =
3H2

0

8πG

[
a(t0)

a(t)

]3
Ωm,0

ρrad(t) =
3H2

0

8πG

[
a(t0)

a(t)

]4
Ωrad,0

ρvac(t) =
3H2

0

8πG
Ωvac,0 .

(7.14)

Defining

x ≡ a(t)

a(t0)
, (7.15)

so that x varies from 0 to 1 as the universe evolves from the big bang to the present,
Eq. (7.9) can be rewritten as ȧ

a

2

= H2
0

(
Ωm,0

x3
+

Ωrad,0

x4
+ Ωvac

)
− kc2

a2
. (7.16)
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It is convenient to rewrite the curvature term in the same form as the other terms, by
defining

Ωk,0 ≡ −
kc2

a2(t0)H2
0

, (7.17)

so

H2 =

 ȧ
a

2

=

(
ẋ

x

)2

= H2
0

(
Ωm,0

x3
+

Ωrad,0

x4
+ Ωvac +

Ωk,0

x2

)
=
H2

0

x4
(
Ωm,0x+ Ωrad,0 + Ωvac,0x

4 + Ωk,0x
2
)
.

(7.18)

By specializing this formula to t = t0, for which x = 1, one finds 1 = Ωm,0 + Ωrad,0 +
Ωvac,0 + Ωk,0, so

Ωk,0 = 1− Ωm,0 − Ωrad,0 − Ωvac,0 . (7.19)

Ωk > 0 for an open universe, Ωk < 0 for a closed universe, and Ωk = 0 for a flat universe.
The present age of the universe can then be found by taking the square root of Eq. (7.18),

ẋ

x
=
H0

x2

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 , (7.20)

or

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 . (7.21)

This equation can be rearranged as

dt =
1

H0

xdx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2

, (7.22)

which can be integrated over the range of x from the big bang to the present to give

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2

. (7.23a)

The above form is probably the easiest to integrate, but for some purposes it is useful to
rewrite it by changing variables of integration to z, where

1 + z =
a(t0)

a(t)
=

1

x
.

The integral then becomes

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2
. (7.23b)
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In this form one could also find the “look-back time” to any particular redshift z by
stopping the integration at that point:

tlook-back(z) =

1

H0

∫ z

0

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 + Ωvac,0 + Ωk,0(1 + z′)2
.

(7.24)

The look-back time is defined as the time interval between the era that we observe at
redshift z and the present.

The general case of the integrals in Eqs. (7.23) and (7.24) can be computed only
by numerical integration, but various special cases can be carried out analytically. The
case of a matter-dominated universe (Ωrad = Ωvac = 0) was done in Lecture Notes 5.
The case of a flat universe composed of nonrelativistic matter and vacuum energy (i.e.,
Ωrad = Ωk = 0, Ωm + Ωvac = 1) can also be integrated analytically, yielding

t0 =



2

3H0

tan−1
√

Ωm,0 − 1√
Ωm,0 − 1

if Ωm,0 > 1, Ωvac < 0

2

3H0
if Ωm,0 = 1, Ωvac = 0

2

3H0

tanh−1
√

1− Ωm,0√
1− Ωm,0

if Ωm,0 < 1, Ωvac > 0 .

(7.25)

Note that inverse hyperbolic tangents can also be expressed in terms of logarithms, so
the answer for the Ωm,0 < 1 case can also be written as

t0 =
2

3H0

ln
(√

1− Ωm,0 + 1
)
− ln

√
Ωm,0√

1− Ωm,0

. (7.26)

Although Eq. (7.25) expresses t0 in terms of three different expressions, the function is
actually continuous, so the value for Ωm,0 = 1 can be obtained as the limit of either the
expression for Ωm,0 > 1 or the expression for Ωm,0 < 1.

A graph of the age of the universe as a function of the Hubble constant, for a matter-
dominated universe without a cosmological constant, is given by Eq. (4.47) and is shown
in Fig. 7.2. For the parameter choice of H0 = 67.7 km·s−1·Mpc−1 (the Planck 2018 value)
and Ω = 1, this gives t0 = 9.62 × 109 yr, which is significantly younger than the 11.2
billion year mininum age determined by Krauss and Chaboyer, based on age of the oldest
stars, as discussed on pp. 2-3 of Lecture Notes 4.

However, this discrepancy of age estimates goes away when one attributes approx-
imately 70% of Ω to a cosmological constant. A graph of the age of the universe, for
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Figure 7.2: The age of an open (Ω < 1), closed (Ω > 1), or
flat (Ω = 1) universe containing only nonrelativistic matter.

a flat universe composed of nonrelativistic matter and a cosmological constant, is given
by Eq. (7.25) and is shown as Fig. 7.3. Note that Ωm refers to the mass density of
nonrelativistic matter only. For all the model universes shown on this graph, the total
Ω (including nonrelativistic matter and vacuum mass density) is one, which is in accord
with the predictions of the simplest inflationary models (which will be discussed at the
end of the term).

The graph also shows two data points: the point labeled RB refers to the Ryden
Benchmark Model (from Barbara Ryden, Introduction to Cosmology), and the point
labeled Planck2018 is the best fit model to the Planck 2018 data set, combined with a
number of other cosmological measurements.* The parameters associated with these two
models are shown in Table 7.1.

The Planck 2018 data best fit is generally regarded as the most reliable estimate of
cosmological parmeters that we currently have. Using the parameters from this table,
Eq. (7.25) gives a current age t0 of 13.5 billion years for the Ryden Benchmark model,

* N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological
parameters,” Table 2, Column 6, arXiv:1807.06209.

* The Planck paper does not give values for Ωb or Ωdm, but instead gives values for
Ωbh

2 and Ωdmh
2, where h = H0/(100 km·s−1·Mpc−1). The values shown here were

computed from the values for Ωbh
2, Ωdmh

2, and h, assuming that the uncertainties are
uncorrelated.

https://arxiv.org/abs/1807.06209
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Figure 7.3: The age of a flat universe containing nonrelativis-
tic matter and vacuum energy. The dots indicate the Ryden
Benchmark Model and the Planck 2018 best fit.

Parameters
Ryden

Benchmark
Planck 2018

Best Fit

H0 70 67.7± 0.4 km·s−1·Mpc−1

Baryonic matter Ωb 0.04 0.0490± 0.0004∗

Dark matter Ωdm 0.26 0.261± 0.003∗

Total matter Ωm 0.30 0.311± 0.006

Vacuum energy Ωvac 0.70 0.689± 0.006

Table 7.1: Cosmological Parameters.

and 13.80 billion years for the Planck 2018 best fit model. The Aghanim et al. Planck
“Cosmological Parameters” paper cited above gives a best fit value for the age of the
universe of 13.79±0.02 billion years, where the quoted uncertainty of 0.15% is considerably
smaller than would be obtained by compounding the uncertainties of the parameters
shown in the table: 0.6% for H0 and 1.8% for Ωm. Thus, the Planck group is asserting
that the uncertainty in H0 and Ωm are correlated in just the right way so that they can
determine the age of the universe with much greater precision than they can determine
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either of the input parameters.

(To get some feeling for the stability of these numbers, we can compare with an
earlier WMAP data set, the 3-year data.* In that paper the numbers were reported
as H0 = 73.5 ± 3.2 km·s−1·Mpc−1, Ωb = 0.041, Ωdm = 0.196, Ωm = 0.237 ± 0.034,
Ωvac = 0.763± 0.034, and t0 = 13.73+0.16

−0.15 billion years.)

We will discuss the physics underlying the Planck and WMAP anisotropy measure-
ments near the end of the term, but for now it is worth mentioning that Planck refers
to a European Space Agency satellite experiment that was launched in May 2009 to
measure the anisotropies (i.e., nonuniformities) of the cosmic microwave background ra-
diation. WMAP refers to the Wilkinson Microwave Anisotropy Probe, an earlier satellite
launched in June 2001, for the same purpose. While the CMB is uniform in all directions
to an accuracy of a few parts in 100,000, the nonuniformities can nonetheless be measured
to a high degree of accuracy, providing important information about the early universe.
Planck and WMAP are still in orbit, but WMAP stopped taking data in August 2010,
and Planck stopped taking data in October 2013. WMAP released its first-year data set
in February 2003, and later released three-year (March 2006), five-year (March 2008),
seven-year (January 2010), and a final nine-year (December 2012) data set. The Planck
experiment has released three data sets, in March 2013, in February 2015, and in July
2018. Both WMAP and Planck carried out their observations from a unique location,
called the L2 Lagrange Point. L2 is located at a position approximately 1.5 million kilo-
meters from Earth, in a direction opposite to the Sun. It follows the orbit of the Earth
around the Sun once per year, always maintaining its position along a radial line drawn
from the Sun through the Earth. L2 is an ideal location for astronomy, because the
satellite can look outward away from the Sun, so at any time it can view half of the sky
with no interference from the Sun, Earth, or Moon. Over the course of one year, the
entire sky can be viewed under these ideal conditions.

It may seem strange that a satellite measuring the anisotropies of the CMB can give
us values for parameters such as H0 and Ωm, but such parameters can be extracted if
one has a theoretical prediction for the anisotropies that depends on these parameters.
In fact such a theoretical model does exist, and it fits the data extraordinarily well. We
will come back to this topic at the very end of the course.

One can include Ωrad,0 in the age calculation of Eq. (7.23) by doing the integral
numerically, and using Ωr = 9.2× 10−5, which we found from Eq. (6.23). If one includes
it with the Planck parameters, adjusting Ωvac,0 to keep the universe exactly flat, one finds
that the age estimate is decreased by 5.7 million years, which is just beyond the level of
accuracy of the calculation. So for this calculation, the effect of radiation in the universe
is negligible.

* D.N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) Three Year
Observations: Implications for Cosmology,” Table 5, ‘WMAP Only’ column, Ap. J. Supp.
170, 377 (2007), http://arxiv.org/abs/astro-ph/0603449v2.

http://arxiv.org/abs/astro-ph/0603449v2
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THE HUBBLE DIAGRAM — RADIATION FLUX VERSUS REDSHIFT:

The claims that the cosmological constant is nonzero are based on the Hubble di-
agram, the graph which shows the measurements of the radiation flux of sources as a
function of their redshift z. To understand how the cosmological constant affects this di-
agram, we need to derive the formula for the received radiation flux of a specified source,
in a model universe which includes a cosmological constant. In principle we need to con-
sider closed, flat, and open universes, but I will show the calculation in detail only for the
case of a closed universe. The open-universe case is very similar, so I will merely describe
the differences and state the answer for this case. The flat universe is the borderline case
between open and closed, so it can be treated as a limiting case of either open or closed
universes, or it can be done as a separate calculation.

The Robertson-Walker metric for a closed universe was given as Eq. (5.34):

ds2 = −c2 dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
. (5.34)

The cosmological constant will affect the evolution of a(t), but the form of the metric was
determined by the symmetries of homogeneity and isotropy, and will not be changed.

We will be interested in tracing the trajectories of photons traveling along radial
lines, so for this purpose it will be useful to introduce the radial coordinate ψ, defined by

sinψ ≡
√
k r .

One finds

dψ =

√
k dr

cosψ
=

√
k dr√

1− kr2
.

The metric then simplifies to

ds2 = −c2 dt2 + ã2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
, (7.27)

where the new scale factor ã(t) is related to the scale factor a(t) by

ã(t) ≡ a(t)√
k
. (7.28)

This form of the metric is useful for investigating radial motion, because the radial part
of the metric is very simple. (You might recall that the closed universe metric was
constructed in Lecture Notes 6 by first considering a sphere in 4 Euclidean dimensions.
The coordinate ψ defined here is precisely the same as the angle ψ that was used in that
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Figure 7.4: Diagram showing how the power of a
source is uniformly spread over a sphere that includes
the detector on Earth used to measure the energy flux.

construction — it is the angle between the w-axis and a line joining the origin of the
4-dimensional coordinate system to the point in question.)

Fig. 7.4 is a diagram showing how radiation from a distant source reaches a detector
on Earth. The diagram shows a comoving coordinate system with the source at the
origin, ψ = 0. The radial coordinate of the detector, on Earth, is called ψD. The
diagram also shows a sphere at the same radial coordinate, ψD. We assume that the
source is spherically symmetric, so that the power emitted by the source is uniformly
spread over this sphere. Since the speed of light is independent of angle, all the photons
that left the source at some particular time tS are arriving at the ψ = ψD sphere at the
present time t0. To calculate the power received by the detector, we need to know what
fraction of those photons hit the detector. The fraction is simply the area of the detector
divided by the area of the sphere, or

fraction =
area of detector

area of sphere
=

A

4πã2(t0) sin2 ψD

.

(The area of the sphere at radial coordinate ψD is given by 4πã2(t0) sin2 ψD, because the
part of the metric (7.27) that depends on dθ and dφ is equal to ã2(t) sin2 ψ times the
metric for a sphere of unit radius.) The power hitting the detector is further reduced by
one factor of

1 + zS =
a(t0)

a(tS)
, (7.29)



THE COSMOLOGICAL CONSTANT p. 14

8.286 LECTURE NOTES 7, FALL 2018

because the frequency, and hence the energy, of each photon is reduced by this factor. In
addition, the power is reduced by another factor of (1 + zS) because the rate of arrival of
photons is reduced by this factor. Thus, if P is the power that the source was emitting
at time tS , then the power received by the detector today is

Preceived =
P

(1 + zS)2
A

4πã2(t0) sin2 ψD

. (7.30)

The flux is given by

J =
Preceived

A
=

P

4π(1 + zS)2ã2(t0) sin2 ψD

. (7.31)

Eq. (7.31) is the answer to our question, but it is not yet expressed in terms of
useful variables — we cannot look up the values of ã(t0) or ψD in standard tables, so we
need to express them in terms of variables that we can look up. Specifically, we will be
able to express the right-hand side of Eq. (7.31) in terms of P , zS , H0, and the various
contributions to the current value of Ω.

Using the definition of ã(t) given by Eq. (7.28), one sees that its present value ã(t0)
can be related to Ωk,0, which was defined by Eq. (7.17). With a little rearranging, the
relation becomes

ã(t0) =
cH−10√
−Ωk,0

. (7.32)

(Note that for a closed universe, Ωk < 0, so the denominator could have been written as√
|Ωk,0|.)

Finally, we need to evaluate ψD, which we expect to be determined by the redshift
zS and cosmological parameters:

ψD = ψ(zS) , (7.33)

where ψ(zS) is defined as the ψ coordinate traversed by radial light pulses that are now
reaching us with redshift zS . These light pulses travel along a null trajectory, where the
word “null” means that ds2 = 0. Given the metric (7.27), a radial null trajectory is
described by

0 = −c2 dt2 + ã2(t) dψ2 =⇒ dψ

dt
=

c

ã(t)
. (7.34)

The evolution equation for ã(t) is identical to the evolution equation for a(t) that was
given as Eq. (7.18):

H2 =

( ˙̃a

ã

)2

=
H2

0

x4
(
Ωm,0x+ Ωrad,0 + Ωvac,0x

4 + Ωk,0x
2
)
, (7.35)
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where

x =
a(t)

a(t0)
=

ã(t)

ã(t0)
. (7.36)

Since the light pulse travels from time t = tS to t = t0, the radial coordinate that it
traverses can be found by integrating Eq. (7.34) to find

ψ(zS) =

∫ t0

tS

c

ã(t)
dt . (7.37)

Since we are hoping to express the answer in terms of the redshift of the source zS , it is
useful to change the variable of integration to z, where

1 + z =
ã(t0)

ã(t)
. (7.38)

Then

dz = − ã(t0)

ã(t)2
˙̃a(t) dt = −ã(t0)H(t)

dt

ã(t)
. (7.39)

The integration becomes

ψ(zS) =
1

ã(t0)

∫ zS

0

c

H(z)
dz . (7.40)

In this expression we can replace ã(t0) using Eq. (7.32), and we can replace H(z) using
Eq. (7.35), recognizing that x = 1/(1 + z). This gives our final expression for ψ(zS):

ψ(zS) =
√
|Ωk,0|

×
∫ zS

0

dz√
Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2

.
(7.41)

We can now go back to our answer, expressed as Eq. (7.31), and eliminate the
unwanted variables. ã(t0) is replaced using Eq. (7.32), and sin2 ψD can be replaced by
sin2 ψ(zS), giving

J =
PH2

0 |Ωk,0|
4π(1 + zS)2c2 sin2 ψ(zS)

, (7.42)
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Figure 7.5: Hubble diagram from the paper by Riess et al. (1998).

where ψ(zS) is given by Eq. (7.41).

For a sample of the recent data, I include as Fig. 7.5 a graph of the Hubble diagram
from the paper by Riess et al. (1998) that was cited at the beginning of these lecture
notes. Shown at the top is a graph of magnitude vs. redshift for a sample of supernovae.
The vertical axis represents distance as inferred from the brightness, with larger distances
at the top.* Each increase of 5 magnitudes corresponds to the brightness decreasing by a

* More precisely, m −M is the distance modulus, which is related to the luminosity
distance dL by

m−M = 5 log10

(
dL

1 Mpc

)
+ 25 ,

where the luminosity distance is defined as the distance at which the object would have
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factor of 100, so one magnitude corresponds to a factor of 2.512, and an increase by a tenth
of a magnitude corresponds to about a 10% decrease in brightness. Shown on the same
graph are three theoretical curves, calculated from Eq. (7.42), using different theoretical
parameters. The lowest curve represents a matter-dominated flat universe (CDM = “cold
dark matter”), with no cosmological constant. The middle curve represents an open
matter-dominated universe, with Ωm = Ωtot = 0.2, a value which was observationally
plausible before the presence of dark energy became convincing. The uppermost curve,
which seems to be the best fit to the data, represents a flat universe which includes
nonrelativistic matter and a cosmological constant (ΛCDM = cosmological constant +
cold dark matter), with the nonrelativistic matter comprising 0.24 of the critical density,
and the vacuum mass density of the cosmological constant comprising 0.76 of the critical
density. These ratios were chosen as a best fit to the data, within the class of flat models
with these two components. Note that these numbers agree very well with the Planck
2013 best fit model, even though the observations used to determine the parameters
are completely different. The initials “MLCS” at the top stand for “Multi-Color Light
Curve Shape,” a method of analysis that the authors employed to compensate for small
differences in the brightness of the supernovae based on the duration of the light output.
The graph at the bottom shows the same data, but in a way that visually emphasizes
the differences between the three curves. On this graph the middle curve is plotted as
a straight line, and the other curves are shown as offsets relative to the middle curve.
Note that the curves differ by two or three tenths of a magnitude, indicating that the
brightness differences are only 20 to 30%. That is, the measured brightnesses of the
distant supernovae are 20 to 30% dimmer than would be expected in the open universe
Ωm = Ωtot = 0.2 model.

to be located to result in the observed brightness, if we were living in a static Euclidean
universe. In such a universe the energy flux J at a distance d would be given by

J =
P

4πd2
,

so the luminosity distance is given by

dL =

√
P

4πJ
.

Thus,

m−M = −5

2
log10

(
4πJ × (1 Mpc)2

P

)
+ 25 .
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The connection between this effect and acceleration is a little hard to see, but it
can be seen most clearly if one thinks about the appearance of supernovae with a fixed
magnitude, and hence a fixed distance as measured by the luminosity. Then the measured
points lie to the left of the open universe Ωm = Ωtot = 0.2 model, which means that the
redshift is lower than expected. Lower redshift means smaller velocities, and hence the
universe in the past was expanding more slowly than expected. If the universe in the past
was expanding more slowly than expected on the basis of the current expansion rate, it
means that some accelerating influence must have been at work.

The graph may not appear to be very conclusive, but nonetheless the data, if taken
at face value, is statistically very significant. Especially when this data is combined with
the data from the other group, the possibility that we are seeing a statistical fluke is very
small. Nonetheless, there are possible systematic errors that are hard to evaluate. The
observed effect is simply the fact that distant supernovae, at a given redshift, appear
slightly dimmer (by about 20 to 30%) than expected. One alternative explanation might
be that there is dust that obscures our view, causing the supernovae to appear dimmer
than they really are. The problem with this explanation is that most forms of dust
distort the spectrum of the light, absorbing more of the shorter wavelengths, resulting
in a “reddening” of the received light. Since this reddening is not observed, the dust
must be “gray,” the word that is used to describe a filter that absorbs equally across the
spectrum. It is physically possible for dust to be gray if the grains are large enough, but
such dust is not known to exist. Another difficulty with the dust hypothesis is that if
most of the dust is located in the host galaxy of the supernova, as one would expect, then
the amount of absorption should depend on where the supernova is located within the
galaxy. This would in turn produce scatter in a graph like the one shown above, while
the amount of scatter seen is consistent with the known sources of uncertainty. Another
totally different explanation for the observations is the possibility that it is caused by
galactic evolution. Heavy elements are produced in stars, so 5 billion years ago there
was a noticeably lower abundance of heavy elements in galaxies. If the lower abundance
of heavy elements could lead to dimmer supernovae explosions, then this evidence for
a cosmological constant would disappear. However, astronomers have looked hard to
find any visible differences between the early supernovae at large redshift and the recent
supernovae nearby, and so far they have found nothing significant. Further, in the nearby
universe there are galaxies with a range of abundances of heavy elements, and this has
not been observed to produce a difference in the brightness of supernova explosions.

Furthermore a persuasive piece of evidence was uncovered in early 2001 by
A.G. Riess, P.E. Nugent, et al.*, who discovered in data from the Hubble Space Telescope

* “The Farthest Known Supernova: Support for an Accelerating Universe and a
Glimpse of the Epoch of Deceleration,” http://arxiv.org/abs/astro-ph/0104455, Riess
et al., Astrophysical Journal 560, 49–71 (2001).

http://arxiv.org/abs/astro-ph/0104455
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a supernova at the colossal redshift of 1.7. This redshift is large enough so that the light
left the supernova before the era of acceleration is believed to have started. So this mea-
surement would be expected to show the decelerating behavior expected for earlier times,
and indeed it did. By contrast, effects caused by dust or by heavy element abundance
would not be expected to reverse at earlier times.

On balance, I think it is fair to say that currently most cosmologists regard the super-
nova data as persuasive, but not, by itself, irrefutable. However, there is also increasingly
strong evidence from observations of the cosmic microwave background radiation, which
we have summarized earlier in these lecture notes in terms of the Planck and WMAP
results. These observations provide a measurement of the amount of vacuum energy that
agrees very well with the supernova results. In addition, they provide very strong evi-
dence that the universe is flat. There is also much evidence from extragalactic astronomy
that there is not enough matter in the universe, even including the dark matter, to make
up the critical density that is required by general relativity for a flat universe. If this is
right, then vacuum energy becomes the most straightforward explanation of where the
mass density is hidden. Also, as we have discussed, the inclusion of vacuum energy makes
the calculation of the age of the universe from the Hubble expansion rate consistent with
the estimated ages of the oldest stars. With all the evidence combined, there seems to be
no alternative to the belief that about 70% of the mass density of the universe is in the
form of dark energy — a negative pressure material that is either vacuum energy (also
called a cosmological constant), or perhaps “quintessence,” which we will discuss later.

THE PARTICLE PHYSICS OF A COSMOLOGICAL CONSTANT:

While the observational evidence for a cosmological constant seems strong, the un-
derlying physics of a cosmological constant remains very mysterious. From the point of
view of modern particle physics it is not at all strange that the vacuum should have a
nonzero mass density, but it is very hard to imagine any reason why it should have a
value anywhere near the value that is being observed.

According to modern particle physics, the vacuum is actually a very complicated
state. It is defined as the state with the lowest possible energy density, but it is not
“empty” in any conventional sense. For example, the electric and magnetic fields are
constantly fluctuating in the vacuum, because the uncertainty principles of quantum
theory do not allow them to remain at zero value. These fluctuations give a positive con-
tribution to the vacuum energy. The calculation of this contribution is formally infinite,
since each mode of oscillation contributes, and there are an infinite number of modes at
arbitrarily short wavelengths. It seems reasonable, however, to truncate this infinite sum
at what is called the Planck length,

λPlanck =

√
h̄G

c3
= 1.6× 10−33 cm . (7.43)
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This is the scale at which quantum gravity effects are believed to become important, and
even the very notion of classical space presumably breaks down. With this cut-off the
answer becomes finite, but it is more than 120 orders of magnitude larger than the energy
density associated with the observed cosmological constant! You will have a chance to
work this out in detail on Problem Set 8.

There are known negative contributions to the vacuum energy density as well, com-
ing from fermions, such as the electron. Fermions give a huge negative contribution to
the energy density of the vacuum, an effect that can be understood intuitively in terms of
a metaphor known as the “Dirac sea”. That is, the Dirac equation which describes rela-
tivistic electrons has both positive energy and negative energy solutions. These solutions
are viewed as the possible energy levels of particles. When one of the positive energy
levels becomes occupied by a particle, the overall energy of the state increases. But the
overall energy is lowered whenever one of the negative energy levels becomes occupied
by a particle. The vacuum, therefore, is the state in which all the negative enery levels
are filled. The occupation of one of the positive energy levels then corresponds to an
electron, which can be present in an otherwise vacuum state. The overall energy can also
be increased by vacating one of the negative energy levels, leaving behind a “hole in the
Dirac sea.” Such a hole corresponds to a positron, the antiparticle of the electron.

This “filling of the Dirac sea” gives a negative energy density to the vacuum, since
the filling of each negative energy level decreases the overall energy. Like the positive
contribution of the electromagnetic field oscillations, the magnitude of this contribution is
formally infinite. When it is cut off at the Planck length it becomes finite and comparable
in magnitude to the positive contribution of the electromagnetic field.

There is a possibility that these huge positive and negative contributions could some-
how cancel each other almost but not quite exactly, but no one knows why. In the absence
of any real understanding, physicists had until recently assumed that the positive and
negative contributions most likely cancel exactly because of some unknown symmetry
principle. Even if that were the case, it would of course be an important challenge to
understand why. If there really is a cosmological constant, then it looks like the positive
and negative contributions to the vacuum energy density cancel to an accuracy of 120
decimal places, but miss in the 121st decimal place. Or maybe we are just looking at this
all wrong.

At the present time, the cosmological constant problem is perhaps the most signifi-
cant outstanding problem in our understanding of fundamental physics.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe November 29, 2018
Prof. Alan Guth

Lecture Notes 8

PROBLEMS OF THE CONVENTIONAL

(NON-INFLATIONARY) HOT BIG BANG MODEL

INTRODUCTION:

By the 1970s the conventional hot big bang model was well established. It was sup-
ported strongly by the observation of Hubble expansion, by the existence of a thermal
background of microwave radiation, and by the measured abundances of the lightest iso-
topes of atomic nuclei. Nonetheless the model suffered from at least two serious problems
— the horizon/homogeneity problem and the flatness problem — which form the subject
of this set of lecture notes. In the next set of lecture notes we will discuss a third problem
— the magnetic monopole problem — which arises if one assumes that particle physics
at very high temperatures is described by a type of theory called a grand unified theory.

THE HORIZON/HOMOGENEITY PROBLEM:

The horizon problem is the difficulty in explaining the large-scale uniformity of the
observed universe. This large-scale uniformity is most evident in the microwave back-
ground radiation. This radiation appears slightly hotter in one direction than in the
opposite direction, by about one part in a thousand — but this nonuniformity can be at-
tributed to our motion through the background radiation. Once this effect is subtracted
out, using best-fit parameters for the velocity, it is found that the residual temperature
pattern is uniform to about one part in 105. Uniformity in temperature is not necessar-
ily mysterious, as any isolated system will evolve over time towards a state of thermal
equilibrium, which is state of uniform temperature. For example, when we take a hot
slice of pizza out of the oven, it begins immediately to cool toward room temperature. It
turns out, however, that the standard processes of thermal equilibration cannot, in the
context of the conventional hot big bang model, explain the uniformity of temperature in
the universe. The problem is that in this model the universe evolves much too quickly to
allow this uniformity to be achieved by the usual processes by which a system approaches
thermal equilibrium.

In order to see this, we will not need to know anything about the details of thermal
transport processes. We will use only the fact that no physical process can cause matter,
energy, or information to move faster than the speed of light. Thus, no process can
carry energy beyond the “horizon distance,” which was defined in Lecture Notes 4 as the
present distance of the furthest particles from which light has had time to reach us, since
the beginning of the universe. The issue of horizons was introduced into cosmology by W.
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Rindler in 1956,* and the horizon problem is described (without using the words “horizon
problem”) in two well-known textbooks: S. Weinberg, Gravitation and Cosmology, J.
Wiley and Sons (1972), and C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation,
W.H. Freeman & Co. (1973).

In Lecture Notes 4 we found that this horizon distance is given by 3ct for the case
of a matter-dominated k = 0 universe, and in Lecture Notes 6 we showed that it is 2ct
for the case of a radiation-dominated k = 0 universe. We also showed in Lecture Notes
6 that the universe became matter-dominated at about 50,000 years after the big bang,
and that the cosmic microwave background radiation decoupled from the rest of matter
at td ≈ 370, 000 years after the big bang. Thus, the radiation decoupled well after the
universe became matter-dominated, so to a good approximation the horizon distance at
this time is given by `h(td) ≈ 3ctd ≈ 1, 100, 000 light-years. (I am using the convention
that a subscript “d” denotes the value of a given quantity at the time of decoupling, and
a subscript “0” will denote its value at the present time.)

For comparison, we would like to calculate the distance, at time td, between our
own galaxy (or, more precisely, the matter which will later become our galaxy) and the
site of emission of the cosmic background radiation that we are now receiving. To do
this, we can make use of some previous results. In Lecture Notes 6 we learned that
the cosmic microwave background radiation was emitted (or more precisely, decoupled)
when the temperature was 3000 ◦K. Since the current temperature is about 2.7 ◦K, and
since aT = constant as the universe expands, it follows that the redshift at the time of
decoupling is given by

1 + z =
a(t0)

a(td)
=

3000◦K

2.7◦K
≈ 1100 , (8.1)

where I have also made use of Eq. (2.15) to relate 1 + z to the ratio of the scale factors.
Knowing 1+z we can find the present distance between our galaxy and the site of emission
of the radiation, using the result of Problem 3, Problem Set 2. You found there that for
a matter-dominated k = 0 universe, the present physical distance of an object seen at
redshift z is given by

`p(t0) = 2cH−1
0

[
1− 1√

1 + z

]
. (8.2)

Using H0 = 67.7 km-s−1-Mpc−1, one finds that H−1
0 ≈ 14.4 × 109 yr and `p(t0) ≈

28.0 × 109 light-yr. That is, the region of emission of the cosmic background radiation
that we are presently observing is a spherical shell of matter at just a little bit less than

* W. Rindler, “Visual horizons in world-models,” Monthly Notices of the Royal
Astronomical Society, Vol. 116, pp. 662–677 (1956), http://adsabs.harvard.edu/abs/
1956MNRAS.116..662R

http://adsabs.harvard.edu/abs/1956MNRAS.116..662R
http://adsabs.harvard.edu/abs/1956MNRAS.116..662R
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the present horizon distance, `h(t0) ≈ 2cH−1
0 . But physical distances vary with time as

a(t), so the physical radius of this shell of matter at the time of decoupling td is given by

`p(td) =
a(td)

a(t0)
`p(t0)

≈ 1

1100
× 28.0× 109 lt-yr ≈ 2.55× 107 lt-yr .

(8.3)

Thus, at the time of emission of the cosmic background radiation, the region of emission
was a spherical shell with a radius many times larger than the horizon distance. Specif-
ically, the radius was `p(td)/`h(td) ≈ 2.55 × 107 lt-yr/1.1 × 106 lt-yr ≈ 23 times larger
than the horizon distance.

To state the problem most clearly, suppose that one detects the cosmic microwave
background in a certain direction in the sky, and suppose that one also detects the
radiation from precisely the opposite direction. At the time of emission, the sources of
these two signals were separated from each other by about 46 horizon distances. Thus it
is absolutely impossible, within the context of this model, for these two sources to have
come into thermal equilibrium by any physical process.

This problem is not a genuine inconsistency of the conventional hot big bang model
— if the uniformity is assumed in the initial conditions, then the universe will evolve
uniformly. The “problem” is that one of the most salient features of the observed universe
— its large-scale uniformity — cannot be explained by the conventional model; it simply
must be assumed as an initial condition. The suggestion then is not that the conventional
model is wrong, but rather that it is incomplete.

The calculation described above depended on our approximation that the universe
was matter-dominated at all relevant times, which is a rather crude approximation.
Nonetheless, since 46 is so far from one, we can be confident that this problem will
not go away with a more careful calculation.

THE FLATNESS PROBLEM:

A second problem of the conventional hot big bang model is known as the flatness
problem — it refers to the difficulty in understanding why the present value of Ω (the
ratio of the mass density ρ to the critical mass density ρc) is close to 1. Today we know
that Ω0 is equal to 1 at least to within about 1/2% — more precisely, by combining their
own data with data from other experiments, the Planck team* concluded that

Ω0 = 0.9993± 0.0037 (8.4)

* N. Aghanim et al. (Planck Collaboration), “Planck 2018 results, VI: Cosmological
parameters,” Table 4, Column 5, arXiv:1807.06209.

https://arxiv.org/abs/1807.06209
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at the 95% confidence level. Historically, however, the flatness problem was already severe
even in 1980, when we only knew that Ω0 was somewhere in the range

0.1 < Ω0 < 2 (circa 1980). (8.5)

The key fact is that the value Ω = 1 is a point of unstable equilibrium, something like a
pencil balancing on its point. The word “equilibrium” implies that if Ω is ever exactly
equal to one, it will remain equal to one forever — that is, a flat (k = 0) universe remains
a flat universe. However, if Ω is ever slightly larger than one, it will rapidly grow toward
infinity; if Ω is ever slightly smaller than one, it will rapidly fall toward zero. Thus, in
order for Ω to be anywhere near 1 today, the value of Ω in the early universe must have
been extraordinarily close to one.

Like the horizon problem, this problem is not a genuine inconsistency of the con-
ventional model. If one is willing to assume that the value of Ω in the early universe
was extraordinarily close to one, then the model will describe how the universe evolves
to have a value of Ω today within the accepted range. The problem is again the lack of
explanatory or predictive power of the model — the extraordinary closeness of Ω to unity
in the early universe cannot be explained, but must simply be assumed as an initial con-
dition. The mathematics behind the flatness problem was undoubtedly known to almost
anyone who has worked on the big bang theory from the 1920’s onward, but apparently
the first people to consider it a problem in the sense described here were Robert Dicke

and P.J.E. Peebles, who published a discussion in 1979.†

To work out the evolution of Ω, we need only recast some relations that we have
already derived. The key relation is the first-order Friedmann equation for the evolution
of the scale factor, derived in Lecture Notes 3:

H2 ≡
(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (8.6)

where the overdot represents a derivative with respect to t. Recalling that ρc = 3H2/8πG
(see Eq. (3.33)), one can divide both sides of the equation by H2 to give

1 =
ρ

ρc
− kc2

a2H2
, (8.7)

which can be rewritten as

Ω− 1 =
kc2

a2H2
, (8.8)

† R.H. Dicke and P.J.E. Peebles, “The big bang cosmology — enigmas and nostrums,”
in General Relativity: An Einstein Centenary Survey, eds: S.W. Hawking and
W. Israel, Cambridge University Press (1979).
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where we recalled that
Ω ≡ ρ

ρc
. (8.9)

But the evolution of a and H are already understood. For a matter-dominated k = 0
universe, we know from Lecture Notes 3 that a ∝ t2/3, and therefore H = ȧ/a = 2/(3t).
It follows that

Ω− 1 ∝
(

1

t2/3

)2 (
1

t−1

)2

∝ t2/3 (matter-dominated). (8.10)

For a radiation-dominated k = 0 universe, on the other hand, we know from Lecture
Notes 6 that a ∝ t1/2, so H = 1/(2t). This gives

Ω− 1 ∝
(

1

t1/2

)2 (
1

t−1

)2

∝ t (radiation dominated). (8.11)

We can now trace the evolution of Ω backward in time. From the Planck limit on
Ω0 listed in Eq. (8.4), we can conclude that

|Ω0 − 1| < .01 . (8.12)

We could have written |Ω0 − 1| < 0.005, but for simplicity we will consider only integer
powers of ten. Again for simplicity, we will assume that the universe can be described in
terms of a matter-dominated era and a radiation-dominated era, both nearly flat so that
Eqs. (8.10) and (8.11) apply, with a sharp transition between the two. The transition
occurs at about 50,000 years after the big bang, while we estimate the current age of the
universe as 13.8× 109 years. Using Eq. (8.10), we conclude that the value of Ω at 50,000
years is given by

(Ω− 1)t=50,000 yr ≈
(

50,000

13.8× 109

)2/3

(Ω0 − 1) ≈ 2.36× 10−4 (Ω0 − 1) . (8.13)

Let us now calculate the value of Ω at 1 second after the big bang. One second is
a particularly interesting time, because it is the earliest time for which we have direct
evidence that the conventional hot big bang model seems to be working. The processes
which lead to nucleosynthesis begin at about t = 1 sec, and the predictions derived from
big bang nucleosynthesis calculations are in good agreement with observations.

To find the value of Ω at one second, begin by noting that

1 sec

50,000 yr
=

1 sec

50,000 yr
× 1 yr

3.16× 107 sec
= 6.33× 10−13 .
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Combining Eqs. (8.11) and (8.13), we find that

(Ω− 1)t=1 sec ≈ 6.33× 10−13 (Ω− 1)t=50,000 yr

≈ 1.49× 10−16 (Ω0 − 1) .
(8.14)

Using Eq. (8.12), we conclude that

|Ω− 1|t=1 sec < 10−18 . (8.15)

Thus, at one second after the big bang, the value of Ω must have been equal to one
to an accuracy of 18 decimal places! The flatness problem is the statement that the
conventional hot big bang model provides no explanation of how the value of Ω came to
be tuned so precisely. Note that if we had put ourselves back into the setting of 1980,
using Eq. (8.5) instead of (8.4), we still would have reached the extraordinary conclusion
that Ω at one second must have equaled 1 to an accuracy of 16 decimal places.

As we will see shortly, the horizon and flatness problems provide much of the mo-
tivation of the inflationary universe model, which gives a simple resolution to both of
them.
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THE MAGNETIC MONOPOLE PROBLEM

INTRODUCTION:

In addition to the horizon and flatness problems discussed in Lecture Notes 8, the
conventional (non-inflationary) hot big bang model potentially suffers from another prob-
lem, known as the magnetic monopole problem. If one accepts the basic ideas of grand
unified theories (GUT’s) in addition to those of the conventional cosmological model,
then one is led to the conclusion that there is a serious problem with the overproduc-
tion of particles called “magnetic monopoles”. While a full understanding of the particle
physics of grand unified theories is obviously much more than can be accomplished in a
single set of lecture notes, the goal here will be to give you a qualitative understanding
of what a grand unified theory is and how magnetic monopoles arise in such theories.
We will not try to give a solid justification for all the steps along the way, but we will
get far enough so that you will be able to estimate for yourself the magnetic monopole
production in the early universe, verifying that far too many monopoles are predicted in
the context of the conventional hot big bang cosmology.

THE STANDARD MODEL OF PARTICLE PHYSICS:

Before discussing grand unified theories, there are a few things that should be said
about the “standard model of particle physics,” which is the bedrock of our understanding
of particle physics. The standard model, which was developed in the early 1970s, has en-
joyed enormous success, giving predictions in agreement with all reliable particle physics
experiments so far. The model has been enlarged since its initial discovery, adding a third
generation of fundamental fermions, but the form of the standard model has remained
unchanged. The original formulation described massless neutrinos, but the model can
easily be modified to include neutrino masses (which are now known to be nonzero, due
to neutrino oscillations). There is more than one way to add neutrino masses, however,
and we are still not sure what is the correct way to do it.

Physicists divide the known interactions in nature into four classes: (1) the strong
interactions, which bind quarks together inside protons, neutrons, and other strongly
interacting particles, and also provide the residual force responsible for the interactions
between these particles; (2) the weak interactions, responsible for example for beta decay
(n → p + e− + ν̄e; e.g. neutron → proton + electron + anti-electron-neutrino); (3)
electromagnetic interactions; and (4) gravity. The standard model of particle physics
describes the first three of these, omitting gravity. In practice there is no problem ignoring
gravity at the level of elementary particle interactions, as the gravitational force between
two elementary particles is so weak that it has never been detected. The gravitational
force between two protons, for example, is 1036 times weaker than the electrostatic force
between the same two particles.
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The elementary particle content
of the standard model of particle
physics is shown in Fig. 9.1,* at
the right. All particles are clas-
sified as either fermions or bosons.
Fermions are particles with spins
that in units of h̄ are equal to 1

2 ,
3
2 , etc., where for the fundamen-
tal particles the spin is always 1

2 h̄.
Fermions obey the Pauli exclusion
principle. Bosons are particles with
spins that are integer multiples of h̄.
They obey quantum mechanical rules
which are the opposite of the Pauli
exclusion principle, so that bosons

Figure 9.1: The particles of the stan-
dard model of particle physics.

have an enhanced tendency to fall into the same quantum state — that is the underlying
principle behind the workings of a laser. The fermions of the standard model belong to
three “generations,” where the second and third generations are essentially copies of the
first, except they are more massive. (The neutrinos are possibly an exception to this, as
we do not know either the values or the ordering of the neutrino masses.) Each generation
contains two quarks, with charges 2/3 and -1/3 in units of the magnitude of the electron
charge, and also a neutrino and a lepton. Each quark comes in three different “color”
states, and all the fermions have associated antiparticles. The color of a quark of course
has nothing to do with its visual appearance, but is simply a label which was dubbed
“color” because there are three possible values, like the three primary colors.

The interactions of the standard model are mainly provided by the “gauge bosons”
shown in the fourth column of the diagram. These are spin-1 particles, and hence bosons,
of which the most familiar is the photon γ. The photon is its own antiparticle, and is said
to be the “carrier” of the electromagnetic interactions. The gluons g are the carriers of
the strong interaction, and there are eight of them, including antiparticles. The Z0, W+,
and W− particles are the carriers of the weak interactions. The Z0 is its own antiparticle,
while the W+ and W− are antiparticles of each other.

At the right of the diagram is the Higgs particle (named for Peter W. Higgs of the
University of Edinburgh), the existence of which was established in July 2012 at the Large
Hadron Collider (LHC) at CERN. The Higgs particle can be seen only in very high energy
processes, by modern accelerator standards, and even then only rarely. For example, in

* From the Wikimedia Commons. Source: PBS NOVA, Fermilab, Office of Science,
United States Department of Energy, Particle Data Group.
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the collision of two high energy protons at the LHC, it is possible for two gluons inside the
protons to fuse into a Higgs particle, which can then decay to two photons. In addition
to its role in describing Higgs particles, the Higgs field is responsible for the masses of
the W±, the Z0, the quarks, and the e±, the µ±, and the τ±. I will come back to the
question of what exactly we mean when we say that the Higgs field is responsible for
these masses. It may also be responsible for the neutrino masses, but it is not responsible
for the mass of the proton; even without the Higgs field, it would be possible for massless
quarks to form a massive bound state, such as the proton.

The spin-1 particles are called “gauge” particles because the standard model is an
example of what is called a gauge theory. We will not have time to describe in detail
what this means, but I will attempt to convey some partial understanding. You already
know about one gauge theory — electromagnetism — but electromagnetism is a little
too simple to make it obvious how to generalize the idea. The gauge theory aspect of
electromagnetism can be seen only if it is written in terms of its potentials: the vector
potential ~A and the scalar potential φ, which are related to the electric field ~E and the
magnetic field ~B by

~E = −~∇φ− 1

c

∂ ~A

∂t
,

~B = ~∇× ~A .

(9.1)

The quantum theory of electromagnetism is always formulated in terms of these poten-
tials. ~A and φ can be put together relativistically to define a four-potential Aµ,

Aµ = (−φ,Ai) . (9.2)

As you have probably seen, the potentials themselves cannot be measured, but are in fact
subject to the symmetry of gauge transformations. That is, given any scalar function
Λ(t, ~x), one can define new potentials φ′ and ~A′ by

φ′(t, ~x) = φ− ∂Λ

∂t
,

~A′(t, ~x) = ~A+ ~∇Λ ,

(9.3)

which can be written in four-vector notation as

A′µ(x) = Aµ(x) +
∂Λ

∂xµ
. (9.4)

Gauge transformations are a symmetry in the sense that the new fields A′µ(x) describe ex-

actly the same physical situation as the original fields: ~E(t, ~x) and ~B(t, ~x) are unchanged.
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If we consider two successive gauge transformations described by functions Λ1(t, ~x)
and Λ2(t, ~x), the combined transformation can be described by a new function Λ3(t, ~x)
given by

Λ3(t, ~x) = Λ1(t, ~x) + Λ2(t, ~x) , (9.5)

so the combination of gauge transformations is described mathematically by the addition
of real numbers. The combination is abelian — it does not matter in what order the
gauge transformations of Λ1 and Λ2 are performed. The extension of gauge theories to
nonabelian (i.e., non-commutative) transformations was invented in 1954 by Chen Ning
(Frank) Yang and Robert Mills, and this idea became a key ingredient of the standard
model of particle physics and its extensions. The standard model is based on gauge
transformations that follow the form of three mathematical groups: SU(3), SU(2), and
U(1). SU(3) is defined as the group of complex 3 × 3 matrices which are special (S)
and unitary (U). The group operation is matrix multiplication. A matrix is special if
its determinant is 1. A matrix U is unitary if it obeys the relation U†U = I, where U†

is called the adjoint of the matrix U , which means that U† is the matrix obtained by
transposing U (interchange rows and columns) and then taking its complex conjugate.
I denotes the identity matrix. The definition of a unitary matrix is equivalent to saying
that U has the property that if it multiplies a complex column vector v of the same
size, then the norm of v is unchanged: |Uv| = |v|, where |v| ≡

√
v†v. The group SU(2)

is defined analogously, except that it uses 2 × 2 matrices. The group SU(2) is in fact
essentially the same as the group of rotations in three spatial dimensions, although that
fact is not obvious if you have not seen it. (It is actually a 2:1 map, with two matrices
in SU(2) corresponding to each rotation matrix.) Finally, U(1) is simply the group of
complex phases, in the sense that an element of U(1) can be represented as a complex
number z = eiθ, where θ is a real number.

In this language standard electromagnetism is a gauge theory based on U(1). From
Eq. (9.5) it looks like we should be talking about the group of real numbers under addition,
but in fact both descriptions are okay. If we included Dirac fields in our theory, to describe
relativistic electrons, the Dirac field ψ would transform under the gauge transformation
as

ψ′(x) = exp{ie0Λ(x)}ψ(x) , (9.6)

where e0 is the charge of the electron. So the transformation is fully described by the com-
plex phase z = exp{ie0Λ(x)}. Note that this phase does not give us enough information
to find Λ, because Λ can be changed by a multiple of 2π/e0 without changing the phase.
But it nonetheless does give us enough information to find the gauge transformation of
Aµ(x), since

∂Λ

∂xµ
=

1

ie0
e−ie0Λ(x) ∂

∂xµ
eie0Λ(x) . (9.7)

Yang and Mills invented a procedure to construct a field theory based on any of
these gauge groups. A gauge transformation is defined by specifying an element of the
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group at each point in spacetime, and two successive transformations combine according
to the definition of multiplication in the mathematical group. Since SU(3) and SU(2) are
nonabelian, these are called nonabelian gauge theories. These theories require specific
spin-1 fields, which are the gauge fields shown in column 4 of Fig. 9.1. The equations of
motion of these gauge fields are completely determined by the gauge symmetry, except
for one coupling constant g for each gauge symmetry, which describes the size of the
nonlinear terms in the equations of motion. Note that linear equations of motion allow
any two solutions to be superimposed to obtain a third solution, which means that waves
of the field do not interact, and the corresponding particles are free (i.e., do not interact).
The coupling constant g therefore describes the strength of the interactions of the gauge
particles, both with themselves and with other particles. For electromagnetism the gauge
coupling constant is e, the magnitude of the electron charge, which in fact describes
the strength of the interaction between photons and any charged particle. Photons are
atypical among gauge particles, however, in that photons do not interact with other
photons, which is a consequence of the fact that photons obey an abelian gauge theory.
In addition to the gauge fields, gauge theories also allow other fields to be present, with
interactions that are strongly restricted by the gauge symmetry, but not completely
determined by it.

The three gauge symmetries of the standard model are usually described together as
a product group, SU(3)×SU(2)×U(1). An element of such a product group is simply an
ordered triplet (u3, u2, u1), where u3 is an element of SU(3), u2 is an element of SU(2),
and u1 is an element of U(1). Thus the product group provides a compact notation, but
really has the same information content as you would get by thinking about the three
groups individually.

The SU(3) part describes the strong interactions, while the SU(2) and U(1) together
describe the electromagnetic and weak interactions. The two are intertwined in their
effect, however, so together they describe the electroweak interactions. While electro-
magnetism is a U(1) gauge theory, the U(1) of electromagnetism is actually a combined
transformation that involves the U(1) of the standard model and a rotation about one
fixed direction within the SU(2) group.

The Higgs field of the standard model is a complex doublet; i.e.,

H(x) ≡
h1(x)
h2(x)

 , (9.8)

where h1(x) and h2(x) are each complex numbers defined at each point x ≡ (t, ~x) in
spacetime. The functions h1(x) and h2(x) are called the components of the Higgs field
H(x). The doublet transforms under SU(2) gauge transformations in what is called the
fundamental representation. I.e.,

H ′(x) = u2(x)H(x) , (9.9)
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Figure 9.2: The approximate shape of the potential energy function for the Higgs field
in the standard model of particle physics.

where u2 denotes the 2× 2 complex unitary matrix that defines the element of the gauge
transformation at the spacetime point x. The gauge symmetry implies that the potential
energy density of the Higgs field must be gauge invariant, which in turn means that it
can depend only on the norm of the field,

|H| ≡
√
|h1|2 + |h2|2 . (9.10)

The potential energy function for the Higgs field is assumed to have a peculiar
form, as shown in Fig. (9.2). The potential energy function (which actually describes
the potential energy density) is chosen to produce a phenomenon called spontaneous
symmetry breaking. Spontaneous symmetry breaking is actually a common phenomenon
in many branches of physics, including familiar processes such as the freezing of water.
In the case of water, the relevant symmetry is rotational invariance. The laws of physics
that describe water are completely rotationally invariant, with no direction preferred over
any other direction. However, when water freezes, it forms a crystalline lattice which is
not rotationally invariant. The crystalline lattice picks out definite directions along which
the molecules align. The initial allignment is chosen randomly as the first molecules bind
together, and then the rest of the molecules follow the pattern as they join onto the
crystal. In general, whenever the ground state of a system has less symmetry than the
underlying laws that describe it, it is called spontaneous symmetry breaking.

The equations of the standard model are exactly invariant under the gauge symmetry,
but the only value of H that would be invariant under the gauge transformation (9.9)
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is H = 0. But the potential energy function is designed so that the state H = 0 has a
high energy, and the vacuum state — the state with the lowest possible energy density
— has a nonzero value of |H|. This means that in the vacuum H must have a value that
breaks the symmetry. There are of course an infinite number of directions in (h1, h2)
space which would have the same value of |H|, and all would minimize the energy just
as well. Like the direction of the crystal axes, the direction is picked out at some early
time, and after that it is “frozen”, becoming constant in time and over large regions of
space.

The SU(2)×U(1) part of the standard model gauge symmetry implies that in the
fundamental equations there is no distinction between electrons and neutrinos. The
distinction arises entirely from the spontaneous symmetry breaking. The lepton fields
interact with the Higgs fields, and those which interact with the components of the Higgs
fields that have nonzero values will behave differently from the components that remain
zero. Thus some components of the lepton fields will describe electrons, and some will
describe neutrinos.

Before leaving the standard model, I’d like to try to qualitatively explain the connec-
tion between Higgs fields and mass. First, when we say that the Higgs field is responsible
for the mass of the quarks, leptons, W+, W−, and the Z, we are talking about their
rest masses. If the Higgs were not included in the theory, all these particles would have
zero rest mass, like the photon. To understand how one field can influence the rest mass
of another, remember that particles in a quantum field theory are simply the quantized
excitations of fields. The rest mass times c2 is the least energy that a particle can have,
so the rest mass is just 1/c2 times the energy of the smallest possible excitation. To find
this smallest excitation, we imagine describing the field inside a rectangular box, with for
example periodic boundary conditions, and expand the field in terms of its normal modes.
For small oscillations each normal mode behaves as a harmonic oscillator. When a har-
monic oscillator is described quantum mechanically, the lowest energy level is E = 1

2 h̄ω,
where ω is the (angular) frequency of the oscillator. The excited energy levels are evenly
spaced, with the n’th energy level given by

En =

(
n+

1

2

)
h̄ω . (9.11)

Thus the smallest excitation is given by

∆E = E1 − E0 = h̄ω . (9.12)

For any field, the mode with the smallest frequency is the homogeneous mode, the mode
where the whole field oscillates uniformly. Thus, the mass of the particle is simply

m0 =
h̄ω0

c2
, (9.13)
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where ω0 is the angular frequency for homogeneous oscillations of the field. This formula
implies that the rest mass of the photon is zero, since the frequency of a photon is
given by ω = 2πc/λ, so it approaches zero as λ approaches infinity, which is the limit of
homogeneous oscillations. This is also the case for the quarks, leptons, W+, W−, and the
Z of the standard model, if the Higgs field has zero value. But when some components of
the Higgs fields have a nonzero value, the equations of the theory imply that these Higgs
fields interact with the other fields, in some cases creating a restoring force, proportional
to the value of one of the Higgs components, which pushes the other fields towards zero
value. This restoring force results in a nonzero frequency for homogeneous oscillations,
and hence a rest mass for the corresponding particles.

While the standard model (with some modification for neutrino masses) has been
spectacularly successful in explaining all particle physics experiments, few if any physicists
regard it as the final story, for at least two types of reasons. First, the theory is incomplete:
it does not include gravity, nor does it contain any particle which can account for the dark
matter in the universe. Second, the theory is viewed by physicists as being too inelegant
(i.e., too ugly) to be the final theory. Specifically, the theory has many more seemingly
arbitrary features and free parameters than one would hope. Why should there be three
unconnected gauge symmetries, and why should there be three generations of fermions?
The theory in its original form has 19 free parameters, such as the masses of each of
the fermions and the strengths of the three fundamental interactions, which have values
that must be measured, but cannot be deduced from any known principle. To account
for neutrino masses, 7 or 8 new parameters must be added. What determines the values
of all these parameters? Thus, while the standard model is certainly very accurate over
a huge range of phenomena, the field of “beyond-the-standard-model” (BSM) particle
physics is burgeoning.

Grand Unified Theories:

Grand unified theories, which were first proposed in the 1970s, are one promising
attempt to go beyond the standard model. Grand unified theories are aimed primarily at
unifying the three gauge interactions of the standard model, namely the SU(3), SU(2),
and U(1) interactions. This is accomplished by embedding all three symmetry groups
into a single, larger group, which becomes the gauge symmetry of the full theory. In the
context of the full grand unified symmetry, there is no distinction between a neutrino, an
electron, or a quark. The distinction is entirely created by the spontaneous breaking of
the symmetry. The breaking of the full gauge symmetry down to SU(3)×SU(2)×U(1) is
accomplished by introducing Higgs fields to produce the needed spontaneous symmetry
breaking. (These fields are different from the Higgs field of the standard model, but they
are also called Higgs fields because they play a completely analogous role.)

We are not attempting a full description of any of these topics, but I will explain
how the three groups can be embedded in one larger group. There are many ways to
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do it, but the simplest is to embed them in SU(5), the group of 5 × 5 unitary matrices
with determinant one. This was the original grand unified theory, proposed in 1974 by
Howard Georgi and Sheldon L. Glashow of Harvard.* To do this, we can let the SU(3)
subgroup of SU(5) be the set of matrices of the form

g3 =


x x x 0 0
x x x 0 0
x x x 0 0
0 0 0 1 0
0 0 0 0 1

 , (9.14)

where the 3 × 3 block of x’s represents an arbitrary SU(3) matrix. Similarly the SU(2)
subgroup can be described by matrices of the form

g2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 x x
0 0 0 x x

 , (9.15)

where this time the 2 × 2 block of x’s represents an arbitrary SU(2) matrix. Note that
these matrices commute with matrices of the form shown above in Eq. (9.14). Finally,
we need to find a set of U(1) matrices, complex phases, which commute with both classes
of matrices described above. This can be done by setting

g1 =


e2iθ 0 0 0 0
0 e2iθ 0 0 0
0 0 e2iθ 0 0
0 0 0 e−3iθ 0
0 0 0 0 e−3iθ

 , (9.16)

where the factors of 2 and 3 in the exponents were chosen so that the determinant — in
this case the product of the diagonal entries — is one, as it must be for an SU(5) matrix.

* H. Georgi and S. L. Glashow, “Unity of All Elementary-Particle Forces,”
Phys. Rev. Letters, vol. 32, pp. 438-441 (1974). Available from Phys. Rev.
Letters at http://prl.aps.org/abstract/PRL/v32/i8/p438_1, from Phys. Rev. Let-
ters with an MIT certificate as http://prl.aps.org.libproxy.mit.edu/abstract/PRL/
v32/i8/p438_1, or it can be found for example at http://puhep1.princeton.edu/
∼kirkmcd/examples/EP/georgi_prl_32_438_74.pdf. The paper had a one sentence ab-
stract: “Strong, electromagnetic, and weak forces are conjectured to arise from a single
fundamental interaction based on the gauge group SU(5).” According to the INSPIRE
database, it has been cited over 4,600 times.

http://prl.aps.org/abstract/PRL/v32/i8/p438_1
http://prl.aps.org.libproxy.mit.edu/abstract/PRL/v32/i8/p438_1
http://prl.aps.org.libproxy.mit.edu/abstract/PRL/v32/i8/p438_1
http://puhep1.princeton.edu/~kirkmcd/examples/EP/georgi_prl_32_438_74.pdf
http://puhep1.princeton.edu/~kirkmcd/examples/EP/georgi_prl_32_438_74.pdf
http://inspirehep.net/search?ln=en&ln=en&p=find+a+georgi+and+a+glashow+and+title+unity&of=hb&action_search=Search&sf=&so=d&rm=&rg=250&sc=0
http://inspirehep.net/search?ln=en&ln=en&p=find+a+georgi+and+a+glashow+and+title+unity&of=hb&action_search=Search&sf=&so=d&rm=&rg=250&sc=0
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In the SU(5) theory there is only one gauge interaction strength, while in the stan-
dard model there are three. The trick of relating one SU(5) interaction strength to the
three interaction strengths of SU(3)×SU(2)×U(1) was a key step in the development of
grand unified theories. The interaction strengths, it turns out, are not fixed constants,
but vary with energy in a calculable way. When the three interaction strengths are ex-
trapolated from the measured values to much higher energies, it is found that to a good
approximation they meet, as shown in Figure 9.3.*

In Figure 9.3, α1, α2, and α3 are the coupling strengths of the U(1), SU(2), and SU(3)
interactions, respectively, as measured at low energies and extended to high energies
according to the theory. (The αi are related to the coupling constants gi mentioned
earlier by αi ≡ g2

i /4π.) The horizontal axis shows the base-10 logarithm of the energy
scale in GeV. The top graph shows the calculation for the standard model, while the
bottom graph shows the more promising calculation for the Minimal Supersymmetric
Standard Model, an extension of the standard model that incorporates supersymmetry.
(Supersymmetry is a proposed, approximate symmetry that connects fermions to bosons
and vice versa, which would connect each of the known particles to a partner that is
slightly too massive to have yet been seen.) This graph is perhaps one of the strongest
pieces of evidence for supersymmetry, and for grand unification. It implies a unification
scale of about 1016 GeV.

The grand unified theory is constructed so that the spontaneous symmetry breaking
gives masses of order 1016 GeV to those gauge bosons that represent interactions that
are part of SU(5), but not part of the SU(3)×SU(2)×U(1) subgroup of the standard
model. Energies of order 1016 GeV are totally unattainable; the LHC is designed to
reach an energy of 7 TeV = 7,000 GeV per beam, or 14 TeV total. Nonetheless, we can
speak theoretically about energies high compared to 1016 GeV, and then the spontaneous
symmetry breaking of the grand unified theory would become unimportant. At such
very high energies, the full gauge symmetry would become apparent. But at energies low
compared to 1016 GeV, these 1016 GeV-scale particles would be too heavy to ever produce,
and we would expect to see precisely the particle physics of the SU(3)×SU(2)×U(1)
standard model.

The Magnetic Monopole Problem:

A magnetic monopole is a particle with a net North or South magnetic charge. The
magnetic field of a monopole points radially outward (or inward), with a magnitude
proportional to 1/r2, just like the Coulomb field of a point electric charge. Such particles

* Taken from the Particle Data Group 2016 Review of Particle Physics, C. Patrignani
et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016), Chapter 16, Grand
Unified Theories, Revised January 2016 by A. Hebecker and J. Hisano, http://www-
pdg.lbl.gov/2016/reviews/rpp2016-rev-guts.pdf.

http://www-pdg.lbl.gov/2016/reviews/rpp2016-rev-guts.pdf
http://www-pdg.lbl.gov/2016/reviews/rpp2016-rev-guts.pdf
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Figure 16.1: Running couplings in SM and MSSM using two-loop RG evolution.
The SUSY threshold at 2 TeV is clearly visible on the r.h. side. (We thank Ben
Allanach for providing the plots created using SOFTSUSY [61].)
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Figure 9.3: Running of the U(1), SU(2), and SU(3) inter-
action strengths with energy, in the standard model (SM) of
particle physics and in the minimal supersymmetric standard
model (MSSM). The horizontal axis is log10Q, where Q is the
energy in GeV.
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do not exist in the usual formulation of electromagnetism, in which all magnetic effects
arise from electric currents. An ordinary bar magnet, with internal currents associated
with the alignment of electronic orbits, has the form of a dipole, with North and South
poles at the two ends. If a bar magnet is cut in half, one obtains two dipoles, each with
a North and South pole. Grand unified theories (GUTs), however, imply that magnetic
monopoles necessarily exist. They are generally superheavy particles, with mass energies
of approximately 1018 GeV. That is, they are about two orders of magnitude heavier
than the unification scale.

The magnetic monopoles of grand unified theories are constructed as twists, or knots,
in the GUT Higgs fields, so the production of magnetic monopoles is closely linked to
the behavior of the GUT Higgs fields as the early universe expanded and cooled. More
technically, these knots in the GUT Higgs fields are called topological defects.

At high temperatures these Higgs fields will undergo large thermal fluctuations. In
many grand unified theories the high temperature thermal equilibrium state is one in
which the values of the fields average to zero, which means that the GUT symmetry is
unbroken. As the system cools a phase transition is encountered. A phase transition is
characterized by a specific temperature, called the critical temperature, at which some
thermal equilibrium properties of the system change discontinuously. In this case, at
temperatures below the critical temperature, some subset of the Higgs fields acquire
nonzero mean values in the thermal equilibrium state — the GUT symmetry is thereby
spontaneously broken. There may be one or perhaps several such phase transitions before
the system reaches the lowest temperature phase — the phase which includes the vacuum.
For simplicity, we will discuss the case in which there is only one such phase transition.
In any case, the broken symmetry state which exists below the critical temperature is
not unique, for precisely the same reason that the vacuum state is not unique.

In the conventional cosmological model, it is assumed that this phase transition
occurs quickly once the critical temperature is reached. Thus, in any given region of
space the Higgs fields will settle into a broken symmetry state, in which some subset of
the Higgs fields acquire nonzero mean values. The choice of this subset is made randomly,
just as the orientation of the axes of a crystal are determined randomly when the crystal
first starts to condense from a molten liquid. The other particles in the theory, such
as the quarks and leptons, are also described by fields, which interact with the Higgs
fields in a manner consistent with the GUT symmetry. Through these interactions, the
randomly selected combination of nonzero Higgs fields determines what combination of
the fields will act like an electron, what combination will act like a u-quark, etc. The
same random choice determines what combination of vector boson fields will act like the
photon field, and what combinations will act like the W ’s, Z’s, or gluons. In addition,
some vector bosons acquire masses of the order of 1016 GeV, and these vector bosons
are then irrelevant to the low energy physics which we observe in present-day accelerator
experiments.
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As mentioned above, the magnetic monopoles are examples of defects which form in
the phase transition. The defects arise when regions of the high temperature symmetric
phase undergo a transition to different broken-symmetry states. In the analogous situ-
ation when a liquid crystallizes, different regions may begin to crystallize with different
orientations of the crystallographic axes. The domains of different crystal orientation
grow and coalesce, and it is energetically favorable for them to smooth the misalignment
along their boundaries. The smoothing is often imperfect, however, and localized defects
remain.

The detailed nature of these defects is too complicated to explain here, so I will settle
for the statement of some general facts. There are three types of defects that can occur.
The simplest type is a surfacelike defect called a domain wall. This type of defect arises
whenever the broken-symmetry state in one region of space cannot be smoothly deformed
into the broken-symmetry state in a neighboring region of space. A domain wall then
forms at the interface between the two regions. Some grand unified theories allow for
the formation of such domain walls, and others do not. The second type is a linelike
defect called a cosmic string. Again, some grand unified theories allow such defects to
exist, and others do not. Finally, the third type is a pointlike defect, called a magnetic
monopole. In contrast to the first two types of defects, magnetic monopoles exist in any
grand unified theory.

To see how a pointlike defect can arise, let us consider the simplest theory in which
they occur. This theory is too simple to describe the real world, but it serves as a “toy”
model which is useful to illustrate many features of spontaneously broken gauge theories.
The theory has a three-component multiplet of Higgs fields, which I will denote by φa,
where a = 1, 2, or 3. The symmetry which operates on this multiplet is identical in its
mathematical form to the transformations that describe how the three components of
an ordinary vector are modified by a rotation. The potential energy density associated
with the Higgs fields is then a function of the three components φa. The energy density
function, however, is an ingredient of the fundamental theory which must be invariant
under the symmetry. Thus, the energy density can depend only on

|φ| ≡
√
φ2

1 + φ2
2 + φ2

3 . (9.17)

The potential energy density for this field will be assumed to have the general form shown
earlier for |H|, so that spontaneous symmetry breaking ensues. The energy density will
be minimized when |φ| has some particular nonzero value, which we will call φv. Now
consider the following static configuration of the Higgs field:

φa(~r ) = f(r)r̂a , (9.18)

where r ≡ |~r |, r̂a denotes the a-component of the unit vector r̂ = ~r/r, and f(r) is a
function which vanishes when r = 0 and approaches φv as r → ∞. This configuration
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is sketched below in Fig. 9.4. An arrow is drawn at each point in space, and the three
vector components of the arrow are used to represent the three components of the Higgs
field:

Figure 9.4: Graphical represention of the three-component
Higgs field in the vicinity of a magnetic monopole.

If the diagram were constructed as a three-dimensional model, then all of the arrows
would point radially outward from the origin. (An antimonopole is described by a similar
picture, except that the arrows would point radially inward.) Note that the index a on
φa normally has nothing to do with any direction in physical space — φ1, φ2, and φ3 are
just three scalar fields. Their behavior is related by a symmetry of fields — the gauge
symmetry — but this symmetry is unrelated to the symmetry of rotations in physical
space. Nonetheless, each field φa is allowed to be an arbitrary function of position, so
there is nothing to prevent the fields from assuming the form of Eq. (9.18), as illustrated
in Fig. (9.4).

The Higgs fields for the monopole configuration are in a vacuum state at large dis-
tances, but the fields differ from their vacuum values in the vicinity of r = 0, resulting
in a concentration of energy. It can be proven that this configuration is “topologically
stable” in the following sense: if the boundary conditions for the fields at infinity are held
fixed, and if the fields are required to be continuous functions of position, then there must
always be at least one point at which all three components of the Higgs field vanish. I will
not attempt to prove this theorem, but I recommend that you stare at the diagram until
the theorem becomes believable. Because of this topological property of the magnetic
monopole configuration, it is sometimes referred to as a “knot” in the Higgs field. The
configuration involves a concentration of energy localized around a point, and it behaves
exactly as a particle.

So far I have not mentioned anything about magnetic fields, so the astute reader
is no doubt wondering why these particles are called magnetic monopoles. For present
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purposes the important property is that these objects are topologically stable knots in the
Higgs fields, but in fact they must have a net magnetic charge. The reason comes from
energy considerations. In the absence of any other fields, the energy of the magnetic
monopole Higgs field configuration would be infinite. To understand this infinity, you
must accept without proof the fact that the expression for the energy density of a Higgs
field contains a term proportional to the square of the gradient. The form of Eq. (9.18)
for large r (with f(r)→ φv) then implies that the gradient of φa falls off as 1/r at large
distances. The total energy within a large sphere is therefore proportional to

4π

∫
r2 dr

(
1

r

)2

and therefore diverges linearly with the radius of the sphere. However, the expression for
the energy density becomes more complicated when the vector boson fields are included.
It is beyond what we have time to discuss here, but it can be shown that the total energy
of the Higgs field configuration of Eq. (9.18) can be made finite only if the configuration

includes vector boson fields that correspond to a net magnetic charge. (The usual ~∇· ~B =
0 equation holds far away from the center of the monopole, where |φ| is very close to φv,

but ~∇· ~B can be nonzero near the center of the monopole, where the Higgs fields become
small and the other gauge fields become part of the dynamics.) Even the magnitude
of this magnetic charge is determined uniquely. The magnetic charge must correspond
to a value 1/(2α) times the electric charge of an electron. Here α denotes the usual
fine structure constant of electrodynamics: α = e2/h̄c in cgs units, or α = e2/4πε0h̄c
in SI (mks) units. In any case, α ≈ 1/137. This means that the magnetic charge of a
monopole is 68.5 times as large as the electric charge of an electron, and the force between
two monopoles is then (68.5)2 times as large as the force between electrons at the same
distance.

The mass of a monopole can be estimated in these models, and it turns out to
be extraordinary. The mass is approximately 1/α times the mass scale at which the
unification of forces occurs. Since the unification of forces occurs roughly at 1016 GeV,
it follows that Mc2 for a monopole is about 1018 GeV.

Having gone through the basic physics, we are now in a position to discuss how one
estimates the number of magnetic monopoles that would be produced in the GUT phase
transition. I will present a crude argument which is probably accurate to within one or
two orders of magnitude. Although the argument will be crude, there is really no need
to carry out a more accurate calculation. The magnetic monopole problem is so severe
than an ambiguity of two orders of magnitude in the estimate is unimportant to the
conclusion.

Recall that the monopoles are really knots in the Higgs field, so their number density
is related to the misalignment of the Higgs field in different regions of space. This
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misalignment can be characterized by a “correlation length” ξ. We will need only an
approximate definition of this correlation length, so it will suffice to say that ξ is the
minimum length such that the Higgs field at a given point in space is almost uncorrelated
with the Higgs field a distance ξ away. One then estimates that the number density of
magnetic monopoles and antimonopoles is given roughly by

nM ≈ 1/ζ3 . (9.19)

In words, we are estimating that every cube with a side of length ξ will have, on the
average, approximately one magnetic monopole in it. This estimate was first proposed
by T.W.B. Kibble of Imperial College (London).

The remaining problem is to estimate ξ. Here we will be working in the context of
conventional cosmology, in which it is assumed that the phase transition occurs quickly
once the critical temperature is reached. Under these assumptions the phase transition
has no significant effect on the evolution of the early universe. When the universe cools
below the critical temperature Tc of the GUT phase transition (with kTc ≈ 1016 GeV),
it becomes thermodynamically probable for the Higgs field to align uniformly over rea-
sonably large distances. If the system were allowed time to reach thermal equilibrium,
then very few monopoles would be present — their abundance would be suppressed by
the usual Boltzmann factor

e−Mc2/kT

from statistical mechanics. For this case the factor is roughly e−100 ≈ 10−43. However,
if the whole process must happen on the time scales at which the early universe evolves,
then there is not enough time for this long range correlation of the Higgs field to become
established. While we are not prepared to calculate the correlation length in these cir-
cumstances, we can safely say that the correlation length must be less than the horizon
distance — this statement assumes only that the correlation of the Higgs field requires
the transmission of information, and special relativity implies that information cannot
propagate faster than the speed of light. It is then a straightforward calculation, which
you will do in Problem Set 9, to find a lower bound on the number of monopoles that
would have been produced at the GUT phase transition under these assumptions.

If you do the problem right, you should find that the contribution to Ω today, from
monopoles, would be bigger than 1020, according to this calculation.

This number is obviously unacceptable, but one way to drive this point home is
to consider the age of the universe. As you recall, a large value of Ω implies that the
universe slowed down rapidly to its present expansion rate, giving a low predicted age
for the universe. The formula for the age of the universe was derived in Lecture Notes
4, assuming that it can be approximated as being matter-dominated throughout its evo-
lution. Since the monopoles would behave as nonrelativistic matter, this would be an
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excellent approximation here. For Ω > 2, during the expanding phase, the age is given
by

t =
Ω

2H(Ω− 1)3/2

{
sin−1

(
2
√

Ω− 1

Ω

)
− 2
√

Ω− 1

Ω

}
,

where the inverse sine function is to be evaluated in the range π
2 to π. For very large Ω

the inverse sine function approaches π, and the age is approximated by

t =
π

2H
√

Ω
. (9.20)

Taking Ω as 1020, the age turns out to be 2.2 years. The prediction that you will find
will be even smaller than that, since you should find a value of Ω bigger than 1020.

Thus if grand unified theories are correct — which is plausible but not necessarily
true — then we have another serious problem for the conventional hot big bang model.
The universe, after all, is certainly more than 2.2 years old!
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THE NEW INFLATIONARY UNIVERSE

INTRODUCTION:

The new inflationary universe is a scenario in which the mass density of at least
a small patch of the early universe becomes dominated by the potential energy of a
scalar field, in a state which is sometimes called a false vacuum. This peculiar form of
energy leads to a negative pressure, and hence a repulsive gravitational force, driving
the region into a period of exponential expansion, during which it expands by many
orders of magnitude — hence the name “inflationary”. The word “new” refers to a
modification of my original proposal1 which was suggested independently by Linde2 and
by Albrecht and Steinhardt.3 They suggested a new mechanism by which the exponential
expansion phase could be ended, solving some crucial problems that existed in my original
proposal. The inflationary model is very attractive because it offers possible solutions
to the horizon/homogeneity problem, the flatness problem, and the magnetic monopole
problem, which were discussed in Lecture Notes 8 and 9. It also predicts that the universe
should be flat to high accuracy, a fact which has now been verified to an accuracy of 0.4%.4

In addition, inflationary models give predictions for the properties of the small ripples
that are observed in the cosmic microwave background (CMB) radiation. As we will
discuss at the end of these notes, the predictions of the simplest inflationary models are
beautifully in agreement with what has been measured. If inflation is correct, it would
mean that particle physics mechanisms are responsible for the production of essentially
all the matter, energy, and entropy in the observed universe.

1 A. H. Guth, “The inflationary universe: A possible solution to the horizon and
flatness problems,” Physical Review D, vol. 23, pp. 347–356 (1981), available at http://
prd.aps.org/abstract/PRD/v23/i2/p347_1, or in its original preprint form at http://
slac.stanford.edu/pubs/slacpubs/2500/slac-pub-2576.pdf.

2 A. D. Linde, “A new inflationary universe scenario: A possible solution of the hori-
zon, flatness, homogeneity, isotropy and primordial monopole problems,” Physics Let-
ters B, vol. 108, pp. 389–393 (1982), available at http://www.sciencedirect.com/science/
article/pii/0370269382912199.

3 A. Albrecht and P. J. Steinhardt,“Cosmology for grand unified theories with ra-
diatively induced symmetry breaking,” Physical Review Letters, vol. 48, pp. 1220–1223
(1982), available at http://prl.aps.org/abstract/PRL/v48/i17/p1220_1, or with an MIT
certificate at http://prl.aps.org.libproxy.mit.edu/abstract/PRL/v48/i17/p1220_1.

4 P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 results, XIII: Cosmological
parameters,” Table 5, Column 6, Astronomy & Astrophysics vol. 594, article A13 (2016),
arXiv:1502.01589.

http://prd.aps.org/abstract/PRD/v23/i2/p347_1
http://prd.aps.org/abstract/PRD/v23/i2/p347_1
http://slac.stanford.edu/pubs/slacpubs/2500/slac-pub-2576.pdf
http://slac.stanford.edu/pubs/slacpubs/2500/slac-pub-2576.pdf
http://www.sciencedirect.com/science/article/pii/0370269382912199
http://www.sciencedirect.com/science/article/pii/0370269382912199
http://prl.aps.org/abstract/PRL/v48/i17/p1220_1
http://prl.aps.org.libproxy.mit.edu/abstract/PRL/v48/i17/p1220_1
http://www.aanda.org/articles/aa/abs/2016/10/aa25830-15/aa25830-15.html
http://arxiv.org/abs/1502.01589
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SCALAR FIELDS AND THE FALSE VACUUM:

The (original) inflationary universe scenario was developed to solve the magnetic
monopole problem, but it quickly became clear that the scenario might solve all three
of the problems discussed in Lecture Notes 8 and 9. The scenario contained the basic
ingredients necessary to eliminate these problems, but unfortunately the scenario also
contained one fatal flaw: the exponential expansion was terminated by a phase transition
that occurred by the random nucleation of bubbles of the new phase, very similar to
the way that water boils. It was found that this violent boiling would lead to a grossly
inhomogeneous universe that looks nothing like our universe. This difficulty — which
came to be called the graceful exit problem — was summarized in the original paper1

(in a section credited to Erick Weinberg and Harry Kesten as well as me), and was later
discussed in detail by Erick Weinberg and me5 and by Stephen Hawking, Ian Moss, and
John Stewart.6 Fortunately, the graceful exit problem is completely avoided in a varia-
tion known as the new inflationary universe, developed independently by Andrei Linde2

(then at the Lebedev Physical Institute in Moscow, now at Stanford) and by Andreas
Albrecht and Paul Steinhardt.3 (Albrecht and Steinhardt were both at the University of
Pennsylvania at the time of their discovery; now Albrecht is at UC Davis, and Steinhardt
is at Princeton.)

At the end of these notes I will also briefly describe chaotic inflation, a version of
inflation proposed by Linde in 1983.7 There are now hundreds of versions of inflation,
but they are essentially all variants of new or chaotic inflation.

In order for the new inflationary scenario to occur, the underlying particle theory
must contain a scalar field φ. The potential energy function V (φ), which represents the
potential energy per unit volume, must have a plateau. This plateau is usually taken to
be at φ ≈ 0, and φ = 0 is usually assumed to be a local maximum of V (φ). V (φ) must be
very flat in the vicinity of φ = 0. In the example shown below, V is assumed to depend
only on |φ|.

5 A. H. Guth and E. J. Weinberg,“Could the universe have recovered from a slow
first order phase transition?” Nuclear Physics B, vol. 212, pp. 321–364 (1983), avail-
able at http://www.sciencedirect.com/science/article/pii/0550321383903073, or with an
MIT certificate at http://www.sciencedirect.com.libproxy.mit.edu/science/article/pii/
0550321383903073.

6 S. W. Hawking, I. G. Moss, and J. M. Stewart,“Bubble collisions in the very
early universe,” Physical Review D, vol. 26, pp. 2681–2693 (1982), available at http://
prd.aps.org/abstract/PRD/v26/i10/p2681_1, or with an MIT certificate at http://
prd.aps.org.libproxy.mit.edu/abstract/PRD/v26/i10/p2681_1.

7 Andrei D. Linde, “Chaotic Inflation,” Physics Letters, vol.∼129B, pp.∼177-181
(1983).

http://www.sciencedirect.com/science/article/pii/0550321383903073
http://www.sciencedirect.com.libproxy.mit.edu/science/article/pii/0550321383903073
http://www.sciencedirect.com.libproxy.mit.edu/science/article/pii/0550321383903073
http://prd.aps.org/abstract/PRD/v26/i10/p2681_1
http://prd.aps.org/abstract/PRD/v26/i10/p2681_1
http://prd.aps.org.libproxy.mit.edu/abstract/PRD/v26/i10/p2681_1
http://prd.aps.org.libproxy.mit.edu/abstract/PRD/v26/i10/p2681_1
http://www.sciencedirect.com/science/article/pii/0370269383908377
http://www.sciencedirect.com/science/article/pii/0370269383908377
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Figure 10.1: The potential energy function (labeled “T = 0”) and the high-temperature
finite-temperature effective potential (labeled “High T”) for a scalar field that could drive
new inflation.

To discuss the issues one at a time, I will first discuss the physical properties of a
scalar field of the type described in the previous paragraph, and then we will consider
the role that such a field might play in the early universe.

In most theoretical models of this type, one finds that at high temperature T the
thermal equilibrium value of φ lies at φ = 0. At high temperatures the field will actually
fluctuate wildly, but in most theoretical models the average value is predicted to be
zero. A potential energy function of this general form is shown as Figure 10.1. The curve
labeled “High T” is a graph of what is called the finite-temperature effective potential,
which is actually a graph of the free energy per unit volume; it will not be important for
us to know exactly what free energy is, but to interpret the graph we should keep in mind
that the free energy is minimized in the thermal equilibrium state. For these purposes
we can treat the energy density (and pressure) of the true vacuum as zero, even though
we learned in Lecture Notes 7 that they are apparently not. Taking Ωvac = 0.691 and
h0 = 0.677 from Table 7.1 of Lecture Notes 7 and using Eq. (3.34) from Lecture Notes
3 for the critical mass density, we find that the vacuum energy density of our universe is
about

ρvac = Ωvacρc ≈ 0.691× 1.88× (0.677)2 × 10−26 kg/m
3

= 5.95× 10−27 kg/m
3

= 5.95× 10−30 g/cm
3
.

(10.1)

We will soon see that this number is totally negligible compared to the huge energy
densities that we expect for early universe inflation.
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The scalar field φ that drives the inflation was originally taken to be the Higgs field
of a grand unified theory, but it now seems very unlikely that his could work. The Higgs
fields are required to have relatively strong interactions in order to induce spontaneous
symmetry breaking, which is why the Higgs fields were introduced in the first place.
These interactions generically lead to large quantum fluctuations in the evolution of the
field, which in turn lead to unacceptably large inhomogeneities in the mass density of
the universe. Most inflationary models assume, therefore, the existence of another scalar
field, similar to the Higgs field but much more weakly interacting. This field is usually
called the inflaton.8

So, in thermal equilibrium at high temperatures, one expects the scalar field to have
a mean value around zero. If the system cools, the thermal excitations will disappear,
and the scalar field will find itself in a state of essentially zero temperature, with φ ≈ 0.
This state is called the false vacuum, and its peculiar properties are the driving force
behind the inflationary model.

The false vacuum is clearly unstable, as φ will not remain forever at a local maximum
of V (φ). However, if V (φ) is sufficiently flat, then the time that it takes for φ to move
away from φ = 0 can be very long compared to the time scale for the evolution of the
early universe. Thus, for these purposes the false vacuum can be considered metastable.
Furthermore, while φ remains near zero, the energy density remains fixed near V (0), and
cannot be lowered even if the universe is expanding. It is this property that motivates
the name, “false vacuum.” To a particle physicist, the vacuum is defined as the state of
lowest possible energy density. The adjective “false” is used here to mean “temporary,”
so a false vacuum is a state which temporarily has the property that its energy density
cannot be lowered.9

Since the false vacuum has φ = 0 and no other excitations, the mass density has
a fixed value which is determined by the potential energy function V (φ). For a typical

8 While it had been thought for many years that the inflaton could under no circum-
stances be a Higgs field of any sort, in 2008 Fedor Bezrukov and Mikhail Shaposhnikov
proposed that the Higgs field of the standard model of particle physics could serve as
the inflaton, if one assumed that in addition to its known interactions, it also has “non-
minimal” interactions with gravity — i.e., interactions beyond what is required by the
equivalence principle. See F. Berukov and M. Shaposhnikov, “The Standard Model Higgs
Boson as the inflaton,” Physics Letters B, vol. 659, pp. 703–706 (2008), arXiv:0710.3755
[hep-th].

9 Historically, the phrase “false vacuum” was first used to refer to a state in which the
scalar field was at a local minimum of the potential energy function, so the state could
decay only by quantum mechanical tunneling. Here I have stretched the definition a bit,
using the phrase to describe a scalar field which, although still quite stable, is near a local
maximum of the potential energy function.

http://www.sciencedirect.com/science/article/pii/S0370269307014128
https://arxiv.org/abs/0710.3755
https://arxiv.org/abs/0710.3755
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grand unified theory, this value can be estimated in terms of the GUT energy scale
EGUT ≈ 1016 GeV by using dimensional analysis:

ρf ≈
E4

GUT

h̄3c5
= 2.3× 1084 kg/m

3
= 2.3× 1081 g/cm

3
. (10.2)

(Thus the energy density of our vacuum, estimated in Eq. (10.1), is smaller by more than
100 orders of magnitude.)

The pressure p of the false vacuum is completely determined by the fact that, on
the time scales of interest, its energy density cannot be lowered. To see that a constant
energy density implies a negative pressure, remember the conservation of energy equation
derived in Problem 4 of Problem Set 6:

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (10.3)

If ρ̇ = 0, this equation implies immediately that

p = −ρfc2 . (10.4)

(We used this same argument in Lecture Notes 7, when we were discussing vacuum energy
density and the cosmological constant.)

To understand this result from first principles, think of an imaginary piston that is
filled with false vacuum and surrounded by ordinary true vacuum, as shown below, in
Fig. 10.2:

Figure 10.2: A piston used for a thought experiment to show that
the pressure of a false vacuum state is the negative of its energy
density.

Since this is a thought experiment, we can imagine that the “true vacuum” outside the
piston genuinely has zero energy density and zero pressure. If one prefers not to be
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so imaginative, the energy density and pressure of our vacuum are in any case totally

negligible on the scales that are relevant here. Suppose now that the piston is pulled out

so that the volume of the chamber increases by ∆V . We assume that the walls of the

box are designed to guarantee that the region inside remains completely filled with false

vacuum. The energy of the system then increases by ρfc
2∆V , and therefore the agent

that moved the piston must have done precisely this amount of work.

Figure 10.3: The piston of the thought experiment is pulled out,
enlarging the chamber. The energy density of the false vacuum
inside the chamber is fixed, so the energy in the chamber goes up.
The energy must come from the agent that pulled on the piston.
For the agent to do positive work, the pressure inside the chamber
must be negative.

Since the pressure on the outside is zero, the agent must be pulling against a negative

pressure, which would oppose the motion. Quantitatively, since the work done is −p∆V ,

it follows that p = −ρfc2, confirming the previous result.

The large negative pressure creates a gravitational repulsion, exactly as we discussed

in Lecture Notes 7 in the context of a cosmological constant. The gravitational repulsion

can be seen in the second order differential equation for a, the second order Friedmann

equation,

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (10.5)

which implies that both the pressure and the energy density normally contribute to

the slowing of the cosmic expansion. For the false vacuum, however, the large negative

pressure leads to ρ+3p/c2 < 0, and it follows that ä is positive. The false vacuum creates

a gravitational repulsion which causes the growth of the scale factor a to accelerate. It

is this repulsion which will drive the colossal expansion of the inflationary scenario. The

equations are the same as those for a cosmological constant, except that the false vacuum

energy density disappears when the scalar field rolls off the hill in the potential energy

diagram, while the vacuum energy associated with a cosmological constant is permanent.
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THE NEW INFLATIONARY UNIVERSE:

We can now go through the new inflationary scenario step by step. The starting
point of a cosmological scenario is, unfortunately, still somewhat a matter of taste and
philosophical prejudice. Some physicists find it plausible to assume that the universe be-
gan in some highly symmetrical state. Many others, however, consider it more likely that
the universe began in a highly chaotic state, since the number of chaotic configurations
is presumably much larger. One advantage of the inflationary scenario, from my point of
view, is that it appears to allow a wide variety of starting configurations.

We can begin by discussing what would happen if the early universe were in thermal
equilibrium, at least in the sense of having regions of approximately horizon size in which
thermal equilibrium held. In that case, inflation could begin if the universe was hot
(kT > 1016 GeV) in at least some of these regions, and if at least one of these hot regions
were expanding rapidly. In the hot regions, thermal equilibrium would imply <φ> = 0,
where <φ> denotes the mean value of the field φ as it undergoes its thermal fluctuations.
Rapid expansion would cause these regions to cool, and the scalar field would settle down
to a cool state in which the field is trapped on the plateau of the potential energy hill.
The expansion must be rapid enough so that the cooling of the scalar field occurs before
the region recollapses under the influence of gravity.

Thermal equilibrium would make things simple, but we said earlier that the inflaton
field must interact very weakly, to avoid generating overly large quantum fluctuations.
For such a weakly interacting field, a fairly straightforward calculation of collision rates
shows that the mean time between collisions would be long compared to the age of the
universe at the onset of inflation. Thus there is no compelling reason to assume thermal
equilibrium, although — in the absence of a theory that fixes the initial conditions —
one could assume anything one wants. For inflation to start, the minimal assumption
would be that there existed at least some regions of high energy density with <φ> ≈ 0,
and that at least one of these regions was expanding rapidly enough so that φ became
trapped in the false vacuum.

The above paragraphs describe the new inflationary universe with a hot beginning,
but there are certainly other possibilities. Linde has also proposed the idea of chaotic
inflation,7 in which inflation is driven by a scalar field which is initially chaotic but far
from thermal equilibrium. In this scenario inflation happens while the scalar field rolls
down a gentle hill in the potential energy diagram, so the potential energy diagram need
not have a plateau. Alexander Vilenkin10 (of Tufts University) and Linde11 have sepa-
rately investigated speculative but attractive scenarios in which the universe is created by

10 A. Vilenkin, “The Birth of Inflationary Universes,” Physical Review D, vol. 27, p.
2848 (1983). With an MIT certificate, click here.
11 A. D. Linde, “Quantum creation of the inflationary universe,” Lettere al Nuovo

Cimento, vol. 39, pp. 401-405 (1984) With an MIT certificate, click here.

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.27.2848
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.27.2848
http://journals.aps.org.libproxy.mit.edu/prd/abstract/10.1103/PhysRevD.27.2848
http://link.springer.com/article/10.1007%2FBF02790571
http://link.springer.com/article/10.1007%2FBF02790571
http://link.springer.com.libproxy.mit.edu/article/10.1007/BF02790571
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a quantum tunneling event, starting from a state of absolutely nothing. In these models
the universe enters directly into a de Sitter phase. In a similar spirit James Hartle (of
the University of California at Santa Barbara) and Stephen Hawking (of Cambridge Uni-
versity) have proposed a unique quantum wave function for the universe,12 incorporating
dynamics which leads to an inflationary era.

Although a wide variety of scenarios have been proposed to describe the onset of
inflation, an important feature of inflation is that all these scenarios lead to similar if
not identical predictions. Once inflation starts, the colossal expansion dilutes away the
evidence of how it began. Later I will discuss the phenomenon of eternal inflation, which
carries this idea of dilution to an extreme. We will see that for almost all inflation-
ary models, once inflation starts, it never stops. Instead it goes on producing “pocket
universes” forever. This eternal aspect of inflation presumably erases all traces of how
inflation began, and it also obviates the question of whether the conditions leading to
inflation are likely. As long as the probability that inflation can start is nonzero, and as
long as there is no other mechanism that can compete, it appears (at least to this author)
that there are no other questions about initial conditions that need to be answered. An
ultimate theory of the origin of the universe would still be very interesting, intellectually,
but most likely it would not affect in any way the consequences of inflation.

To continue with the description of the new inflationary scenario, we assume that
there exists a region which is sufficiently homogeneous, isotropic, and flat to be described
by a flat Robertson–Walker metric

ds2 = −c2dt2 + a2(t)d~x 2 , (10.6)

and the equation of motion becomes(
ȧ

a

)2

=
8π

3
Gρ . (10.7)

The solution is given by

a(t) = const× eχt , (10.8)

where

χ =

√
8π

3
Gρf . (10.9)

12 J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Physical Review
D, vol. 28, p. 2960 (1983). With an MIT certificate, click here.

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.28.2960
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.28.2960
http://journals.aps.org.libproxy.mit.edu/prd/abstract/10.1103/PhysRevD.28.2960
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This exponential expansion is of course the hallmark of the inflationary model. (For our
parameters, χ−1 ≈ 10−37 sec.) Such a space is called a de Sitter space.

We of course cannot expect to find a region of the early universe that is exactly
homogenous, isotropic, and flat, so it is important to know that it is enough to come close.
As long as a region meets these criteria approximately, the behavior will be governed by
what has been called the cosmological no-hair conjecture,13 which holds that the region
will evolve so that it locally resembles exact de Sitter space. As long as p = −ρc2 =
constant, which will hold as long as the scalar field φ is near its false vacuum value,
the space will start to expand and any initial particle density will be diluted. Any initial
distortion of the metric is stretched (i.e., redshifted) until it is no longer locally detectable.
This behavior can be proven quite generally in a linearized perturbation analysis, and
has also been seen to hold in some specific solutions with large perturbations. There is
no proof that the early universe must contain regions that start inflating, but it seems
very plausible.

An important property of a de Sitter region, which helps to ensure its durability, is
the presence of event horizons. These are different from the horizons that we have been
discussing since Lecture Notes 4, which are technically called particle horizons, and refer
to the possibility that two objects can be far enough apart so that light from one object
would not have had enough time since the big bang to reach the other. The event horizon
of de Sitter space can be seen by calculating, in the metric described by Eqs. (10.6) and
(10.8), the coordinate distance that light can travel between times t1 and t2:

∆r(t1, t2) =

∫ t2

t1

c

a(t)
dt =

c

const

∫ t2

t1

e−χt dt =
c

constχ

[
e−χt1 − e−χt2

]
. (10.10)

The point is that this distance is limited even as t2 →∞. Note that

lim
t2→∞

a(t1) ∆r(t1, t2) = cχ−1 . (10.11)

Physically, this means that if two objects at rest in these coordinates are separated by a
physical distance more than cχ−1, a light pulse emitted by one object will never reach
the other. This in turn means that if a de Sitter region is large compared to cχ−1, then
the effect of inhomogeneities from outside the region cannot penetrate into the region
any further than a shell of thickness cχ−1. Once the de Sitter region is large compared
to cχ−1, it is impervious to outside influences.

13 R. M. Wald, “Asymptotic behavior of homogeneous cosmological models in the pres-
ence of a positive cosmological constant,” Physical Review D, vol. 28, pp. 2118–2120
(1983), available at http://prd.aps.org/abstract/PRD/v28/i8/p2118_1, or with an MIT
certificate at http://prd.aps.org.libproxy.mit.edu/abstract/PRD/v28/i8/p2118_1.

http://prd.aps.org/abstract/PRD/v28/i8/p2118_1
http://prd.aps.org.libproxy.mit.edu/abstract/PRD/v28/i8/p2118_1
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As the inflating region continues to exponentially expand, the mass density of the
inflaton field is fixed at ρf . Thus, the total energy of the inflaton field is increasing! If
the inflationary model is right, the energy of the inflaton field is the source of essentially
all the matter, energy, and entropy in the observed universe.

This creation of energy seems to violate our naive notions of energy conservation, but
we must remember that there is also an energy associated with the cosmic gravitational
field— the field by which everything in the universe is attracting everything else, thereby
slowing down the cosmic expansion. Even in Newtonian mechanics one can see that the
energy density of a gravitational field is negative. To see this, note that the gravitational
field is strengthened as one brings masses together from infinity, but the potential energy
of the system is lowered as objects are brought together under the influence of the attrac-
tive force. Thus the stronger field corresponds to a lower energy. A good analogy is the
electrostatic field, since Coulomb’s law is very similar to Newton’s law. By calculating
how much work needs to be done in pushing charges to create a specified configuration
of a static electric field, it is possible to show that the energy density stored in an electric
field is given by

uelectrostatic =
1

2
ε0

∣∣∣ ~E∣∣∣2 (10.12a)

or

uelectrostatic =
1

8π

∣∣∣ ~E∣∣∣2 , (10.12b)

depending on what units you are using. The calculation for Newtonian gravity is essen-
tially identical, giving

uNewton = − 1

8πG
|~g|2 . (10.13)

The sign difference arises from the sign difference in the force law: two positive charges
repel, while two positive masses attract. In the context of inflation, the energy stored in
the gravitational field becomes more and more negative as the universe inflates, while the
energy stored in “matter” (everything except gravity) becomes more and more positive.
The total energy remains constant, and very small— perhaps it is exactly equal to zero.

After the region has undergone exponential expansion for some time, inflation must
somehow end, at least in the region that is going to describe our visible universe. The
scalar field is in an unstable configuration, perched at the top of the hill of the potential
energy diagram of Fig. 10.1. It will undergo fluctuations due to thermal and/or quantum
effects. Some fluctuations begin to grow, and at some point these fluctuations become
large enough so that their subsequent evolution can be described by the classical equations
of motion. I will use the term “coherence region” to denote a region within which the
scalar field is approximately uniform. The coherence regions are irregular in shape, and



THE NEW INFLATIONARY UNIVERSE p. 11

8.286 LECTURE NOTES 10, FALL 2018

their initial size is typically of order cχ−1. Note that cχ−1 is only about 10−14 proton
diameters; the entire observed universe will evolve from a region of this size or smaller.

The scalar field φ then “rolls” down the potential energy function shown in Fig. 10.1,
obeying the classical equations of motion derived from general relativity. As long as the
spatial variations in φ are small, these classical equations take the form

φ̈+ 3
ȧ

a
φ̇ = −∂V

∂φ
. (10.14)

(The derivation of Eq. (10.14) is a straightforward application of general relativity, but
it is a little beyond the scope of this course.) If the initial fluctuation is small, then the
flatness of the potential for φ ≈ 0 will ensure that the rolling begins very slowly. Note
that the second term on the left-hand-side of Eq. (10.14) is a damping term, helping to
slow down the speed of rolling. As long as φ ≈ 0 , the mass density ρ remains about
equal to ρf , and the exponential expansion continues. The expansion occurs on a time
scale χ−1, while the time scale of the rolling is much slower. This “slow roll” of the scalar
field is the crucial new feature in the new inflationary universe.

For the scenario to work, it is necessary for the length scale of homogeneity to be
stretched from cχ−1 to at least about 10 cm before the scalar field φ rolls off the plateau
of the potential energy diagram. This corresponds to an expansion factor of about 1028,
which requires about 65 time constants (χ−1) of expansion. The expected duration of
the expansion depends on the precise shape of the scalar field potential, and models have
been constructed which yield much more than the minimally required amount of inflation.

When the φ field reaches the steep part of the potential, it falls quickly to the bottom
and oscillates about the minimum. The time scale of this motion is a typical GUT time
of h̄/EGUT ≈ 7 × 10−41 sec, which is very fast compared to the expansion rate. The
scalar field oscillations are then quickly damped by the couplings to the other fields, and
the energy is rapidly converted into a thermal equilibrium mixture of particles. (From
a particle point of view, the scalar field oscillations correspond to a state of spinless
particles, just as an oscillating electromagnetic field corresponds to a state of photons.
The damping of the scalar field is just the field theory description of the decay of these
particles into other kinds of particles.) The release of this energy reheats the region back
to a temperature which can be of order kT ≈ 1016 GeV, or can be much lower, depending
on the strength of the interactions. The universe is continuing to expand and cool as the
gas of particles approaches a state of thermal equilibrium, so the reheat temperature is
low if this process of thermalization is slow, and high if it is quick.

From here on the standard scenario takes over. The era of inflation has set up
precisely the initial conditions that had previously been assumed in standard cosmology.
You can check that a region of radius ≈ 10 cm, at a temperature kT ≈ 1016 GeV, will
become large enough by the time T falls to 2.7 K to encompass the entire observed
universe.
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CHAOTIC INFLATION:

While I have described the new inflationary model, because I think it is the simplest
version to understand, there are now many variants of inflationary models. One very
important variant is known as chaotic inflation,7 invented by Andrei Linde in 1983.
Linde realized that in fact inflation does not require a plateau in the potential energy
diagram, but can in fact happen with a potential energy function as simple as

V (φ) =
1

2
m2 φ2 , (10.15)

which in fact describes a non-interacting particle of mass m. If the field φ is started at
a large enough value, then sufficient inflation can occur as the scalar field rolls towards
φ = 0. Linde initially proposed that the scalar field could start at a large value in some
places due to “chaotic” initial conditions. Later he showed that quantum fluctuations
can cause these models to also undergo eternal inflation, which will be discussed below,
so the question of initial conditions is perhaps irrelevant.

SOLUTIONS TO THE COSMOLOGICAL PROBLEMS:

Let me now explain how the three problems of the standard cosmological scenario
discussed in Lecture Notes 8 and 9 are avoided in the inflationary scenario. First, let
us consider the horizon/homogeneity problem. The problem is clearly avoided in this
scenario, since the entire observed universe evolves from a single coherence region. This
region had a size of order cχ−1 at the time when the fluctuation began to grow classically.
This size is much smaller than the sizes that are relevant in the standard model at these
times, and the region therefore had plenty of time to come to a uniform temperature
before the onset of inflation. As long as there are about 65 or more time constants of
exponential expansion, then the exponential expansion causes this very small region of
homogeneity to grow to be large enough to encompass the observed universe.

The flatness problem is avoided by the dynamics of the exponential expansion of the
coherence region. As φ begins to roll very slowly down the potential, the evolution of
the metric is governed by the mass density ρf . Assuming that the coherence region (or
at least a small piece of it) can be approximated by a Robertson-Walker metric, then the
scale factor evolves according to the standard Friedmann equation:(

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (10.16)

where k = +1, −1, or 0 depending on whether the region approximates a closed, open, or
flat universe, respectively. (There could also be perturbations, but the cosmological no-
hair theorem guarantees that they would die out quickly.) In this language, the flatness
problem is the problem of understanding why the kc2/a2 term on the right-hand-side
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is so extraordinarily small, compared to the other terms. But as the coherence region
expands exponentially, the mass density ρ remains very nearly constant at ρf , while the

kc2/a2 term is suppressed by at least a factor of
(
1028

)2
= 1056. Since the equation

must continue to hold, the term on the left-hand side must remain nearly constant, like
the mass density. This provides a “natural” explanation of why the value of the kc2/a2

term immediately after the phase transition is smaller than that of the other terms by a
tremendous factor.

Except for a very narrow range of parameters, this suppression of the curvature term
will vastly exceed that required by present observations. This leads to the prediction that
the kc2/a2 term of Eq. (10.16) should remain totally negligible until the present era, and
even far into the future. This implies that the value of Ω today is expected to be equal
to one with a high degree of accuracy.

The inflationary prediction that Ω = 1 seemed to be at odds with observation until
1998, with the discovery of the dark energy. Astronomers never found enough matter to
make up a critical mass density, although there was always some room for uncertainty.
Some inflationary theorists constructed versions of inflation that could lead to an open
universe; this could be arranged by choosing the parameters to that inflation proceeds
for just long enough to solve the flatness problem, but not so long that it flattened the
universe completely.

But the situation changed dramatically in 1998 with the Supernova Type Ia measure-
ments, which indicated the presence of a cosmological constant or a very slowly evolving
scalar field that could simulate a cosmological constant. In either case, the total energy
in this new component of the universe is just what is needed to complete the inventory for
a flat universe. The best current estimate of Ω0 is based on the Planck satellite data4 for
the anisotropies of the cosmic microwave background radiation, combined with several
other astronomical observations, giving Ω0 = 0.9992± 0.0040.

Finally, we turn to the monopole problem. Recall that in the standard scenario, the
tremendous excess of monopoles was produced by the disorder in the Higgs field (i.e.,
by the Kibble mechanism). There is no known way to prevent the Kibble mechanism
from operating, but as long as inflation occurs after or during the process of monopole
formation, the monopoles will be diluted enormously. During inflation the volume of the

coherence region increases by a factor of about
(
1028

)3
= 1084 or more, which is enough

to convert the monopole glut into a situation where no monopoles will be seen.

RIPPLES IN THE COSMIC MICROWAVE BACKGROUND

After subtracting a contribution attributed to the motion of the Earth through the
cosmic microwave background, the temperature of the CMB appears to be uniform in all
directions to an accuracy of about 1 part in 100,000. Nonetheless, at the level of 1 part in
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100,000, there are anisotropies (i.e., non-uniformities) that have by now been measured
to high precision.

The huge stretching of inflation tends to smooth everything out. Any density of
particles that might be present before inflation is diluted away, so that during inflation
the energy density is dominated by the energy density of the false vacuum state. If there
was any curvature in space itself before inflation began, the effect of inflation is to stretch
out those curves. As one stretches a sphere the surface gets flatter and flatter, and the
same is actually true for any curved space. So, when inflation is described in the context
of classical general relativity, the result of inflation would be an almost completely smooth
space. There was a period of about a year, in the very early days of inflation, when this
appeared to be a serious problem. If inflation left the universe almost completely smooth,
then there would be no way for galaxies to form.

But quantum mechanics came to the rescue. The idea that quantum mechanics might
be responsible for the structure of the universe goes back at least to Andrei Sakharov,
the Russian nuclear physicist and political activist, who put forward the idea in 1965.14

In 1981 Mukhanov and Chibisov15 revived Sakharov’s idea in a modern context, study-
ing the density perturbations generated in a closely related model proposed by Alexei
Starobinsky16 in 1980. The original work on density perturbations arising from scalar-
field-driven inflation centered around the Nuffield Workshop on the Very Early Universe,
Cambridge, U.K., June-July 1982, organized by Gary Gibbons and Stephen Hawking.
There was much animated discussion and disagreement during the workshop, but in the
end everyone agreed on the answer. There were four papers17 that came out of the work-
shop, laying the foundations for calculating density perturbations arising from inflation.

The important feature of quantum mechanics in this context is that it is intrinsi-
cally probabilistic. So, while the classical approximation of inflation theory predicts a

14 A. D. Sakharov, “The initial stage of an expanding universe and the appearance of
a nonuniform distribution of matter,” Zh. Eksp. Teor. Fiz. 49, 345 (1965) [JETP Lett.
22, 241 (1966)].
15 V. F. Mukhanov and G. V. Chibisov, “Quantum fluctuations and a nonsingular

universe,” Pis’ma Zh. Eksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].
16 A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,”

Phys. Lett. B, vol. 91, p. 99 (1980) .
17 S.W. Hawking, “The development of irregularities in a single bubble inflationary

universe,” Physics Letters B, vol. 115, p. 295 (1982), (with an MIT certificate, click
here); A. A. Starobinsky, “Dynamics of phase transition in the new inflationary universe
scenario and generation of perturbations,” Physics Letters B, vol. 117, p. 175 (1982); A.
H. Guth and S.-Y. Pi, “Fluctuations in the new inflationary universe,” Physical Review
Letters, vol. 49, p. 1110 (1982) (with an MIT certificate, click here); J. M. Bardeen,
P. J. Steinhardt, and M. S. Turner, “Spontaneous creation of almost scale-free density
perturbations in an inflationary universe,” Physical Review D, vol. 28, p. 679 (1983)
(with an MIT certificate, click here).

http://puhep1.princeton.edu/~kirkmcd/examples/EP/sakharov_jetp_22_241_66.pdf
http://puhep1.princeton.edu/~kirkmcd/examples/EP/sakharov_jetp_22_241_66.pdf
http://www.jetpletters.ac.ru/ps/1510/article_23079.pdf
http://www.sciencedirect.com/science/article/pii/037026938090670X
http://www.sciencedirect.com/science/article/pii/0370269382903732
http://www.sciencedirect.com.libproxy.mit.edu/science/article/pii/0370269382903732
http://www.sciencedirect.com/science/article/pii/037026938290541X
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.49.1110
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.49.1110
http://journals.aps.org.libproxy.mit.edu/prl/abstract/10.1103/PhysRevLett.49.1110
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.28.679
http://journals.aps.org.libproxy.mit.edu/prd/abstract/10.1103/PhysRevD.28.679
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completely smooth universe, the quantum theory implies that the matter density will be
almost uniform, but due to quantum uncertainties the density will be a little higher than
average in some places, and a little lower than average in others. These uncertainties
are just the ripples that are needed to allow galaxy formation to proceed, and they are
just what is needed to compare with observations of the ripples, starting in 1992. Of
course quantum uncertainties are not usually significant on macroscropic scales, so it
seems bizarre that quantum fluctuations can be responsible for the large-scale structure
of the universe. This is made possible, however, by the extremely rapid expansion during
inflation, which stretches the quantum fluctuations from very short length scales, where
we expect them to be strong, to macroscopic and even astronomical length scales.

Inflation is of course not a unique theory, since we do not know exactly what the
inflaton field is, or exactly what equations of motion it obeys. We don’t even know that
inflation was driven by a single inflaton, as there may have been two or more. Thus, the
detailed predictions for density perturbations arising from inflation are model-dependent,
meaning that different assumptions about the inflaton will lead to different predictions.
Nonetheless, there is a wide class of “simple” inflationary models which give very similar
predictions for the spectrum of the density fluctuations. The word “spectrum” here has
pretty much the same meaning it would have for sound waves: the perturbations can be
broken up into components with definite wavelengths, and the “spectrum” is a description
of how the intensity varies with wavelength. (For sound waves we might be more likely to
use frequency rather than wavelength, but for cosmological density perturbations we have
no choice but to use wavelength — we don’t see oscillations, and we expect oscillations
only in some cases.) For the ripples on the CMB, the wavelength is measured in degrees,
not in meters, since we are seeing a pattern on the sky as a function of polar angles θ
amd φ.

The “simple” inflationary models that give similar results are more technically called
single field slow-roll models, and they are characterized by the facts that there is a single
inflaton, and that, during the period when relevant density perturbations are created,
both H = ȧ/a and ∂V/∂φ are nearly constant and the φ̈ term of Eq. (10.14) is small
compared to the other two terms. The overall magnitude of the density perturbations, on
the other hand, depends on more of the details of the inflaton potential energy function,
so at present there is no inflationary prediction for the magnitude.

The ripples in the CMB are measured most easily from space, although ground-based
measurements can also be significant, especially at very short angular wavelengths, for
which high angular resolution is needed. So far there have been three satellite experiments
that have been completely dedicated to measuring the properties of the CMB. The
first was the Cosmic Background Explorer (COBE), launched by NASA in 1989, 15
years after planning began in 1974. In January, 1990, the COBE group announced
their first measurements of the CMB spectrum, showing that it agreed beautifully with
the expected black-body spectrum (recall Figure 6.5 in Lecture Notes 6). In April of
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Figure 10.4: The cosmic microwave background radiation as detected by the
Planck satellite.18 After correcting for the motion of the Earth, the temperature
of the radiation is nearly uniform across the entire sky, with average temperature
Tcmb = 2.726 K. Tiny deviations from the average temperature have been mea-
sured; they are so small that they must be depicted in a color scheme that greatly
exaggerates the differences, to make them visible. As shown here, blue spots are
slightly colder than Tcmb while red spots are slightly warmer than Tcmb, across a
range of ∆T/Tcmb ∼ 10−4.

1992, the team announced the first measurements of anisotropies in the CMB. The 2006
Nobel Prize in Physics was awarded to John Mather and George Smoot for their work
on the COBE mission. The second CMB satellite mission was the Wilkinson Microwave
Anisotropy Probe (WMAP), launched by NASA in 2001. The WMAP was 45 times more
sensitive, with 33 times the angular resolution of its COBE satellite predecessor. The
third CMB satellite was Planck, launched in 2009 by the European Space Agency. The
resolution of Planck was about 2 1

2 times better than WMAP, with higher sensitivity and
also measurements in 9 frequency bands, compared to 5 for WMAP.

Figure 10.4 shows the microwave sky, as seen in the 2015 data release from the Planck
satellite. The radiation is almost completely uniform, but the tiny variations are shown
in a false-color image, with the temperature color-code shown by the bar at the bottom.
This picture is illustrative, but it is hard to learn anything just by looking at it.

Figure 10.519 shows a spectrum computed from the 7-year data release of WMAP

18 R. Adam et al. (Planck Collaboration), “Planck 2015 results, I: Overview of products
and scientific results,” Figure 9, Astronomy & Astrophysics vol. 594, article A1 (2016),
arXiv:1502.01582 [astro-ph.CO]
19 A. H. Guth and D. I. Kaiser, “Inflationary cosmology: Exploring the Universe from

the smallest to the largest scales,” Science, 11 Feb 2005, vol. 307, pp. 884-890 (2005).
With an MIT certificate, click here. Also available at arXiv:astro-ph/0502328.

http://www.aanda.org/articles/aa/full_html/2016/10/aa27101-15/aa27101-15.html
https://arxiv.org/abs/1502.01582
http://science.sciencemag.org/content/307/5711/884
http://science.sciencemag.org.libproxy.mit.edu/content/307/5711/884
https://arxiv.org/abs/astro-ph/0502328
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Figure 10.5: Comparison of the WMAP 7-yr and ACBAR observational measure-
ments of the temperature fluctuations in the CMB with several theoretical models,
as described in the text.

for long angular wavelengths, and an experiment called ACBAR for shorter angular
wavelengths. The graph was constructed by Max Tegmark, to be used in a summary of
inflation written by David Kaiser and me.19 The vertical axis shows the strength of the
fluctuations, in microkelvin, and the horizontal axis shows the angular wavelength, with
the longest wavelengths on the left. (For those who are familiar with spherical harmonics,
the decomposition into angular wavelengths is accomplished by an expansion in spherical
harmonics Y`m(θ, φ), and the vertical axis represents the strength at each `. The angular
wavelength is taken as 360◦/`.) The graph shows a comparison between different theories.
The red line shows the predictions for an inflationary model with Ωvac = 0.72; the yellow
line describes an open universe, with Ωm = 0.30 and Ωvac = 0; the green line describes an
inflationary model without dark energy, meaning that Ωm = 1, Ωvac = 0; the purple line
shows the prediction of a completely different mechanism for the generation of density
perturbations, called cosmic strings.20 Cosmic strings were mentioned in passing on

20 The curve for cosmic strings was taken from U.-L. Pen, U. Seljak, and N. Turok,
“Power spectra in global defect theories of cosmic structure formation,” Physical Review
Letters, vol. 79, pp. 1611–1614 (1997), or with an MIT certificate, click here. Also
available at arXiv:astro-ph/9704165.

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.1611
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.1611
http://journals.aps.org.libproxy.mit.edu/prl/abstract/10.1103/PhysRevLett.79.1611
https://arxiv.org/abs/astro-ph/9704165
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Figure 10.6: The measurements of the CMB temperature fluctuations by the
Planck satellite, 2015 data release. Taken from Ref. [4], Figure 1.

p. 13 of Lecture Notes 9; they are linelike topological defects, in contrast to monopoles
which are pointlike defects. They could create density perturbations through the random
processes involved in their formation, and prior to the careful CMB measurements they
were considered a viable theory for the origin of density perturbations. Now, however,
they are clearly ruled out.

The error bars on the graph are clearly much larger on the left, at large angular
wavelengths, but there is a simple explanation. For perturbations with an angular wave-
length of 0.2◦ there are a huge number of samples on the sky, but for angular wavelengths
such as 180◦ there are very few.

Figure 10.6 shows a more recent graph of the spectrum of the CMB, showing the data
from the 2015 data release of the Planck satellite project. The red line shows a theoretical
curve from a best-fit simple inflationary model, described in Table 4, Column 1 of Ref. [4]:
Ωm = 0.315, Ωvac = 0.685, and H0 = 67.3 km-s−1-Mpc−1. It is actually a six-parameter
fit to the data, where the overall height of the curve is one of the remaining parameters
that is fit. There is also a parameter τ that describes a small amount of absorption of
CMB photons on the way to the Earth — the fraction that arrive is e−τ , where τ = 0.078;
and finally there is a parameter ns = 0.966, which describes a small deviation from the
simple approximation that H and ∂V/∂φ are constant during the period in which the
presently observed density perturbations were created. As one can see, the fit is excellent.
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In the words used by the Planck team, “The Planck results offer powerful evidence in
favour of simple inflationary models.”

ETERNAL INFLATION:

We will not have time to fully discuss the mind-boggling implications of this feature,
but the basic facts are pretty straightforward. As the scalar field rolls off the potential
energy plateau shown in Fig. 10.1, we must remember that in a full quantum mechanical
treatment there will always be some probability that the scalar field will remain at the top
of the hill. Approximate calculations show that this probability falls off exponentially
with time, with a time constant that is similar to, but maybe a factor of 100 slower
than, the time constant of the exponential expansion. This means that if an observer
stayed at any one point of the inflating region, it is highly probable that she would see
inflation end in a very short amount of time, perhaps 10−35 second. However, if we were
to calculate how the total volume of false vacuum changes with time, we would find that
the growing exponential of the expansion dominates over the falling exponential of the
decay, so the total volume of false vacuum grows exponentially in time! Once inflation
starts we expect it never to stop, but instead it will continue forever. The decay of
the false vacuum (the transition of the scalar field to the true vacuum value) does not
happen globally, but instead pieces of the false vacuum undergo the decay and produce
huge regions of inhabitable space that can be called pocket universes. An infinite number
of pocket universes are produced. The collection of the infinite number of pocket universes
is called the multiverse.

Eternal inflation is easiest to understand for new inflation, but it can happen also
in chaotic inflation. In 1986 Linde21 showed that as the inflaton field “rolls” down a hill
in the potential energy diagram, it is possible for quantum fluctuations to drive it up the
hill often enough for the volume of the inflating region to increase with time, rather than
decrease.

Can we see these other universes? Almost certainly not, although in principle other
pocket universes could reveal their presence by colliding with ours. Such collisions could
show up as circular distortions in the cosmic microwave background. Astronomers have
in fact looked for such patterns,22 but have not found any persuasive evidence for them.

Is this discussion physics or metaphysics? That’s debatable, but in my opinion
it is physics, albeit very speculative physics at this stage. First, it seems to be an

21 A. D. Linde, “Eternal Chaotic Inflation,” Modern Physics Letters A, vol. 1, issue 2,
p. 81 (1986).
22 S. M. Feeney, M. C. Johnson, D. J. Mortlock, and H. V. Peiris, “First observational

tests of eternal inflation,” Physical Review Letters, vol. 107, article 071301 (2011). With
an MIT certificate, click here. Also available at arXiv:1012.1995 [astro-ph.CO].

http://www.worldscientific.com/doi/abs/10.1142/S0217732386000129
http://www.worldscientific.com/doi/abs/10.1142/S0217732386000129
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.071301
http://journals.aps.org.libproxy.mit.edu/prl/abstract/10.1103/PhysRevLett.107.071301
https://arxiv.org/abs/1012.1995
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almost unavoidable consequence of inflation, which itself makes a number of testable
predictions, and has been very successful. Second, it now appears that the possibility
of a multiverse may have relevance to perplexing problems in fundamental physics, such
as the cosmological constant problem discussed at the end of Lecture Notes 7. The
problem, we recall, was that the vacuum energy density of our universe, measured by
its acceleration, is vastly smaller (120 orders of magnitude!) than naive estimates from
particle physics. The multiverse offers a possible (although controversial) explanation for
this situation. According to string theory, there is no unique vacuum state, but instead a
colossal number, perhaps 10500 or more, of long-lived metastable states, any one of which
could serve as the vacuum for a pocket universe.23 This set of possible vacua is often
called the “landscape” of string theory. Even if string theory is not right, it is still possible
that nature allows a huge number of different vacuum-like states. Each vacuum-like state
would have its own energy density, expected to be typically of the order of the “Planck
scale,” the energy density that one can construct from the fundamental constants G,
h̄, and c. By dimensional analysis, one finds that the only way to construct an energy
density from these quantities is

ρPlanck ≡
c5

h̄G2
= 5.16× 1096 kg/m

3
= 5.16× 1093 g/cm

3
. (10.17)

On Problem Set 8, Problem 5, you found an estimate for the energy density of the vacuum
fluctuations of the electromagnetic field, which was of this order of magnitude. Vacuum
energy densities can be positive or negative, so a natural expectation is that the energy
densities of the possible vacua would range roughly from minus the Planck scale to plus
the Planck scale. But if they are anything like evenly spread, there would be a fantastic
number (maybe [(5.95 × 10−30 g/cm

3
)/(2 × 5.16 × 1093 g/cm

3
)] × 10500 ≈ 6 × 10376) of

vacua with energy densities as small as what we observe, although they would still be
incredibly rare in the full set of ∼ 10500 vacua.

To explain why we might be living in such a rare type of vacuum, the argument
invokes a selection effect associated with the fact that we are living beings. This selection
effect is often called the “anthropic principle.” We expect most of the pocket universes in
the multiverse to have vacuum energies with a magnitude of the order of the Planck scale,
but such pocket universes would fly apart (if ρvac > 0) or implode (if ρvac < 0) on a time
scale of order 10−44 sec. (To find the time scale, calculate χ−1 for χ given by Eq. (10.9),
with ρf replaced by ρvac.) It is therefore easy to believe that no life will exist in such
typical pocket universes. The complexity of life requires time to evolve, so we expect life

23 R. Bousso and J. Polchinski, “Quantization of four form fluxes and dynamical neu-
tralization of the cosmological constant,” Journal of High Energy Physics, vol. 2000, 06,
006, arXiv:hep-th/0004134. See also R. Bousso and J. Polchinski, “The string theory
landscape”, Scientific American, vol. 291, p. 78–87 (2004). With an MIT certificate, click
here.

http://iopscience.iop.org/article/10.1088/1126-6708/2000/06/006/meta
http://iopscience.iop.org/article/10.1088/1126-6708/2000/06/006/meta
https://arxiv.org/abs/hep-th/0004134
http://www.nature.com/scientificamerican/journal/v291/n3/pdf/scientificamerican0904-78.pdf
http://www.nature.com.libproxy.mit.edu/scientificamerican/journal/v291/n3/pdf/scientificamerican0904-78.pdf
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to form only in those rare types of vacuum in which the vacuum energy densiy is extremely
close to zero. In 1998 H. Martel, P. R. Shapiro, and Steven Weinberg24 estimated how
large the vacuum energy density could be for it to still be possible for matter to condense
out of the background into mass concentrations large enough to form observers. They
found that under these assumptions, life would form only in those pocket universes in
which the vacuum energy density were of the same order of magnitude as the current
critical density. This result makes the selection effect explanation look very plausible,
but we must keep in mind (1) that the Martel-Shapiro-Weinberg calculation ignored the
possibility of life forms very different from ourselves, and (2) the calculation ignored the
fact that other parameters of the laws of physics, and not just the cosmological constant,
could be different in different pockets.

A PERSONAL SUMMARY:

I hope that you have enjoyed our journey into the current status of cosmology. I
personally find it mind-boggling that we can use the big-bang theory to calculate the
abundances of the light chemical elements, and even more mind-boggling that we can
theorize about the behavior of the universe at 10−37 seconds after its beginning. It
is mind-boggling that the structure of the universe could have arisen from quantum
uncertainties, and astounding that such a wild idea can lead to a fit with the data as
good as Figure 10.6.

It is absolutely incredible how far physics has taken us in the quest to understand the
universe, but at the same time it is incredible how many key questions remain unanswered.
The baryonic matter that we understand comprises only about 5% of the total energy of
the universe. What is the dark matter, which makes up 26% of the universe? If the dark
energy is really vacuum energy, why is the energy density so much smaller than particle
theorists would expect? And if inflation is right, what exactly is the inflaton, and what
is the detailed description of its dynamics?

I find it amazing how much we understand about cosmology, and equally amazing
how much we don’t.

24 H. Martel, P. R. Shapiro, and S. Weinberg, “Likely Values of the Cosmological Con-
stant,” The Astrophysical Journal, vol. 492, pp. 29-40 (1998), arXiv:astro-ph/9701099.

http://iopscience.iop.org/article/10.1086/305016/meta;jsessionid=C4A99E3F37B26143CE1BB71C7DBC72DA.c3.iopscience.cld.iop.org
https://arxiv.org/abs/astro-ph/9701099
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PROBLEM SET 1

DUE DATE: Friday, September 14, 2018, 5:00 pm.

READING ASSIGNMENT: The First Three Minutes, Chapters 1 and 2.

NOTE ABOUT EXTRA CREDIT: This problem set contains 40 points of
regular problems and 15 points extra credit, so it is probably worthwhile for
me to clarify the operational definition of “extra credit”. We will keep track
of the extra credit grades separately, and at the end of the course I will first
assign provisional grades based solely on the regular coursework. I will consult
with our teaching assistant, Honggeun Kim, and we will try to make sure that
these grades are reasonable. Then I will add in the extra credit, allowing
the grades to change upwards accordingly. Finally, Honggeun and I will look
at each student’s grades individually, and we might decide to give a higher
grade to some students who are slightly below a borderline. Students whose
grades have improved significantly during the term, students whose average has
been pushed down by single low grade, and students who have been affected
by adverse personal or medical problems will be the ones most likely to be
boosted.

The bottom line is that the extra credit problems are OPTIONAL. You
should feel free to skip them, and you will still get an excellent grade in the
course if you do well on the regular problems. However, if you have some time
and enjoy an extra challenge, then I hope that you will find the extra credit
problems interesting and worthwhile.

PROBLEM 1: NONRELATIVISTIC DOPPLER SHIFT, SOURCE
AND OBSERVER IN MOTION (15 points)

Consider the Doppler shift of sound waves, for a case in which both the source
and the observer are moving. Suppose the source is moving with a speed vs relative
to the air, while the observer is receding from the source, moving in the opposite
direction with speed vo relative to the air. Calculate the Doppler shift z. (Recall
that z is defined by 1+z ≡ λo/λs, where λo and λs are the wavelengths as measured
by the observer and by the source, respectively.) Hint: while this problem can be
solved directly, you can save time by finding a way to determine the answer by using
the cases that are already calculated in Lecture Notes 1.
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PROBLEM 2: THE TRANSVERSE DOPPLER SHIFT (25 points)

Consider the Doppler shift observed by a stationary observer, from a source

that travels in a circular orbit of radius R about the observer. Let the speed of the

source be v.

(a) (5 points) If the wave in question is sound, and both the source speed v and

the wave speed u are very small compared to the speed of light c, what is the

Doppler shift z? Assume that the observer is at rest relative to the air.

(b) (5 points) If the wave is light, traveling with speed c, and v is not small com-

pared to c, what is the Doppler shift z? This is called the transverse Doppler

shift, since the velocity of the light ray is perpendicular to the velocity of the

source at the time of emission, as seen in the reference frame of the observer.

(c) (5 points) Still considering light waves and the same pattern
of motion as shown in the figure, suppose that the source
and the observer were reversed. That is, suppose a light
ray is sent from the person at the center of the circle to the
person traveling around the circle at speed v. In this case,
what would be the Doppler shift z?

(d) (5 points) Now suppose that the motion is linear in-
stead of circular. Again we consider light rays, and as
in part (b) we assume that the source is moving with
a speed v that is not small compared to c. If the light
ray is emitted by the source at the moment of its clos-
est approach to the observer, as shown in the diagram,
what is the Doppler shift z?

(e) (5 points) Again consider linear motion, with light
rays. As in part (c), assume that the observer is mov-
ing with a speed v that is not small compared to c. If
the light ray is received by the observer at the moment
of its closest approach to the source, as shown in the
diagram, what is the Doppler shift z?
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PROBLEM 3: A HIGH-SPEED MERRY-GO-ROUND

(This problem is not required, but can be done for 15 points extra credit.)

Now consider the Doppler shift as it would be observed in a high-speed “merry-
go-round.” Four evenly-spaced cars travel around a central hub at speed v, all at a
distance R from a central hub. Each car is sending waves to all three of the other
cars.

(a) If the wave in question is sound, and both the source speed v and the wave
speed u are very small compared to the speed of light c, with what Doppler
shift z does a given car receive the sound from (i) the car in front of it; (ii) the
car behind it; and (iii) the car opposite it?

(b) In the relativistic situation, where the wave is light and the speed v may be
comparable to c, what is the answer to the same three parts (i)-(iii) above?

Total points for Problem Set 1: 40, plus 15 points of extra credit.
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PROBLEM SET 2

DUE DATE: Monday, September 24, 2018, 5:00 pm. The due date has been postponed,

since Friday September 21 is a Student Holiday.

SEPTEMBER/OCTOBER

MON TUES WED THURS FRI

September 17
Lecture 4

18 19
Lecture 5

20 21

24
Lecture 6
PS 2 due

25 26
Lecture 7

27 28
PS 3 due

October 1
Lecture 8

2 3
Quiz 1
— in class

4 5

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, Chapters

1-3.

PLANNING AHEAD: If you want to read ahead, the reading assignment with Prob-

lem Set 3 will be Weinberg, The First Three Minutes, Chapter 3. Problem Sets

1 through 3, including the reading assignments, will be included in the material

covered on Quiz 1, on Wednesday, October 3.

INTRODUCTION TO THE PROBLEM SET

In this problem set we will consider a universe in which the scale factor is given by

a(t) = bt2/3 ,

where b is an arbitrary constant of proportionality which should not appear in the answers

to any of the questions below. (We will see in Lecture Notes 3 that this is the behavior of

a flat universe with a mass density that is dominated by nonrelativistic matter.) We will

suppose that a distant galaxy is observed with a redshift z. As a concrete example we

will consider the most distant known object with a well-determined redshift, the galaxy
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GN-z11, which has a redshift z = 11.1. The discovery of this galaxy was announced in
March 2016 by an international group of astronomers, using the Hubble Space Telescope*

The rate at which the highest measured red-
shift has been growing has been dramatic. In 1986
the highest measured redshift was only 3.78. It
was 4.01 in 1988, 4.73 in 1992, 4.897 in 1994, and
4.92 in 1998, 5.34 in 2000, 6.28 in 2002, and 6.58
in 2003. In 2006 Iye et al.† discovered a galaxy
with a redshift of 6.96. In 2009-2010 astronomers
searching the Hubble Space Telescope Ultra Deep
Field discovered the galaxy UDFy-38135539, which
was claimed to have a redshift of z = 8.55. Fur-
ther observations, however, failed to confirm this
number. The diagram at the right shows a graph

of the highest confirmed redshift by year of discovery, using the listing in the Wikipedia‡.
The red circles represent quasars, the green circles represent galaxies, and the one orange
circle at 2009 is a gamma ray burst. The search for high redshift objects continues to be
an exciting area of research, as astronomers try to sort out the conditions in the universe
when the first galaxies began to form.

PROBLEM 1: DISTANCE TO THE GALAXY (10 points)

Let t0 denote the present time, and let te denote the time at which the light that we

are currently receiving was emitted by the galaxy. In terms of these quantities, find the

present value of the physical distance `p between this distant galaxy and us.

PROBLEM 2: TIME OF EMISSION (10 points)

Express the redshift z in terms of t0 and te. Find the ratio te/t0 for the z = 11.1

galaxy.

* P. A. Oesh et al., “A Remarkably Luminous Galaxy at z = 11.1 Measured with Hub-
ble Space Telescope Grism Spectroscopy,” The Astrophysical Journal 819, 129 (2016),
https://arxiv.org/abs/1603.00461.
† Iye et al., “A galaxy at a redshift z = 6.96,” Nature vol. 443, no. 7108, pp. 186–188

(14 September 14 2006).
‡ “List of the most distant astronomical objects,” (2016, April 24). In

Wikipedia, The Free Encyclopedia. Retrieved 01:03, May 27, 2016, from
https://en.wikipedia.org/w/index.php?title=List_of_the_most_distant_astronomical
_objects&oldid=716940651

https://arxiv.org/abs/1603.00461
https://en.wikipedia.org/w/index.php?title=List_of_the_most_distant_astronomical_objects&oldid=716940651
https://en.wikipedia.org/w/index.php?title=List_of_the_most_distant_astronomical_objects&oldid=716940651
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PROBLEM 3: DISTANCE IN TERMS OF REDSHIFT z (10 points)

Express the present value of the physical distance in terms of the present value of

the Hubble expansion rate H0 and the redshift z. Taking H0 ≈ 67 km-sec−1-Mpc−1, how

far away is the galaxy? Express your answer both in light-years and in Mpc.

PROBLEM 4: SPEED OF RECESSION (10 points)

Find the present rate at which the physical distance `p between the distant galaxy

and us is changing. Express your answer in terms of the redshift z and the speed of light

c, and evaluate it numerically for the case z = 11.1. Express your answer as a fraction of

the speed of light. [If you get it right, this “fraction” is greater than one! Our expanding

universe violates special relativity, but is consistent with general relativity.]

PROBLEM 5: APPARENT ANGULAR SIZES (20 points)

Now suppose for simplicity that the galaxy is spherical, and that its physical diameter

was w at the time it emitted the light. (The actual galaxy is seen as an unresolved point

source, so we don’t know it’s actual size and shape.) Find the apparent angular size θ

(measured from one edge to the other) of the galaxy as it would be observed from Earth

today. Express your answer in terms of w, z, H0, and c. You may assume that θ � 1.

Compare your answer to the apparent angular size of a circle of diameter w in a static

Euclidean space, at a distance equal to the present value of the physical distance to the

galaxy, as found in Problem 1. [Hint: draw diagrams which trace the light rays in the

comoving coordinate system. If you have it right, you will find that θ has a minimum

value for z = 1.25, and that θ increases for larger z. This phenomenon makes sense if

you think about the distance to the galaxy at the time of emission. If the galaxy is very

far away today, then the light that we now see must have left the object very early, when

it was rather close to us!]
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PROBLEM 6: RECEIVED RADIATION FLUX

(This problem is not required, but can be done for 15 points extra credit.)

At the time of emission, the galaxy had a power output P (measured, say, in ergs/sec)

which was radiated uniformly in all directions. This power was emitted in the form of

photons. What is the radiation energy flux J from this galaxy at the earth today? Energy

flux (which might be measured in ergs-cm−2-sec−1) is defined as the energy per unit area

per unit time striking a surface that is orthogonal to the direction of energy flow. The

easiest way to solve this problem is to consider the trajectories of the photons, as viewed

in comoving coordinates. You must calculate the rate at which photons arrive at the

detector, and you must also use the fact that the energy of each photon is proportional

to its frequency, and is therefore decreased by the redshift. You may find it useful to

think of the detector as a small part of a sphere that is centered on the source, as shown

in the following diagram:

Total points for Problem Set 2: 60, plus 15 points of extra credit.
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PROBLEM SET 3

DUE DATE: Friday, September 28, 2018, 5:00 pm.

READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chap-
ter 3.

SHORT-TERM CALENDAR:

SEPTEMBER/OCTOBER

MON TUES WED THURS FRI

September 17
Lecture 4

18 19
Lecture 5

20 21

24
Lecture 6
PS 2 due

25 26
Lecture 7

27 28
PS 3 due

October 1
Lecture 8

2 3
Quiz 1
— in class

4 5

QUIZ DATES FOR THE TERM:
Quiz 1: Wednesday, October 3, 2018
Quiz 2: Monday, November 5, 2018
Quiz 3: Wednesday, December 5, 2018

FIRST QUIZ: The first of three quizzes for the term will be given on Wednesday,
October 3, 2018, during the regular class period, in the usual room, 4-163.
The quiz material will include Problem Sets 1–3, Lecture Notes 1–3, and the
associated readings. The coverage of the quiz will be described in more detail
on the class website, http://web.mit.edu/8.286/www/.

PROBLEM 1: A CYLINDRICAL UNIVERSE (25 points)

The following problem originated on Quiz 2 of 1994, where it counted 30 points.

The lecture notes showed a construction of a Newtonian model of the universe
that was based on a uniform, expanding, sphere of matter. In this problem we will
construct a model of a cylindrical universe, one which is expanding in the x and y
directions but which has no motion in the z direction. Instead of a sphere, we will

http://web.mit.edu/8.286/www/
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describe an infinitely long cylinder of radius Rmax,i, with an axis coinciding with
the z-axis of the coordinate system:

We will use cylindrical coordinates, so

r =
√
x2 + y2

and

~r = xı̂+ ŷ ; r̂ =
~r

r
,

where ı̂, ̂, and k̂ are the usual unit vectors along the x, y, and z axes. We will
assume that at the initial time ti, the initial density of the cylinder is ρi, and the
initial velocity of a particle at position ~r is given by the Hubble relation

~vi = Hi~r .

(a) (5 points) By using Gauss’ law of gravity, it is possible to show that the grav-
itational acceleration at any point is given by

~g = −Aµ
r
r̂ ,

where A is a constant and µ is the total mass per length contained within the
radius r. Evaluate the constant A.

(b) (5 points) As in the lecture notes, we let r(ri, t) denote the trajectory of a
particle that starts at radius ri at the initial time ti. Find an expression for
r̈(ri, t), expressing the result in terms of r, ri, ρi, and any relevant constants.
(Here an overdot denotes a time derivative.)
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(c) (5 points) Defining

u(ri, t) ≡
r(ri, t)

ri
,

show that u(ri, t) is in fact independent of ri. This implies that the cylinder
will undergo uniform expansion, just as the sphere did in the case discussed in
the lecture notes. As before, we define the scale factor a(t) ≡ u(ri, t).

(d) (5 points) Express the mass density ρ(t) in terms of the initial mass density ρi
and the scale factor a(t). Use this expression to obtain an expression for ä in
terms of a, ρ, and any relevant constants.

(e) (5 points) Find an expression for a conserved quantity of the form

E =
1

2
ȧ2 + V (a) .

What is V (a)? Will this universe expand forever, or will it collapse?

PROBLEM 2: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLU-
TION (10 points)

Consider a flat universe which is filled with some peculiar form of matter, so
that the Robertson–Walker scale factor behaves as

a(t) = bt3/4 ,

where b is a constant.

(a) (5 points) For this universe, find the value of the Hubble expansion rate H(t).

(b) (5 points) What is the mass density of the universe, ρ(t)? (In answering this

question, you will need to know that the equation for ȧ/a in Lecture Notes 3,

 ȧ
a

2

=
8π

3
Gρ− kc2

a2
,

holds for all forms of matter, while the equation for ä,

ä = −4π

3
Gρ(t)a ,

requires modification if the matter has a significant pressure. The ä equation

is therefore not applicable to this problem.)
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PROBLEM 3: ENERGY AND THE FRIEDMANN EQUATION (30
points)

The Friedmann equation, ȧ
a

2

=
8π

3
Gρ− kc2

a2
, (1)

was derived in Lecture Notes 3 as a first integral of the equations of motion. The
equation was first derived in a different form,

E =
1

2
ȧ2 − 4π

3

Gρi
a

= constant, (2)

where k = −2E/c2. In this form the equation looks more like a conservation of
energy relation, although the constant E does not have the dimensions of energy.
There are two ways, however, in which the quantity E can be connected to the
conservation of energy. It is related the energy of a test particle that moves with the
Hubble expansion, and it is also related to the total energy of the entire expanding
sphere of radius Rmax, which was discussed in Lecture Notes 3 as a method of
deriving the Friedmann equations. In this problem you will derive these relations.

First, to see the relation with the energy of a test particle moving with the
Hubble expansion, define a physical energy Ephys by

Ephys ≡ mr2
iE , (3)

where m is the mass of the test particle and ri is its initial radius. Note that the
gravitational force on this particle is given by

~F = −GmM(ri)

r2
r̂ = −~∇Veff(r) , (4)

where M(ri) is the total mass initially contained within a radius ri of the origin,
r is the present distance of the test particle from the origin, and the “effective”
potential energy Veff(r) is given by

Veff(r) = −GmM(ri)

r
. (5)

The motivation for calling this quantity the “effective” potential energy will be
explained below.

(a) (10 points) Show that Ephys is equal to the “effective” energy of the test particle,
defined by

Eeff =
1

2
mv2 + Veff(r) . (6)
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We understand that Eeff is conserved because it is the energy in an analogue problem

in which the test particle moves in the gravitational field of a point particle of mass

M(ri), located at the origin, with potential energy function Veff(r). In this analogue

problem the force on the test particle is exactly the same as in the real problem,

but in the analogue problem the energy of the test particle is conserved.

We call (6) the “effective” energy because it is really the energy of the analogue

problem, and not the real problem. The true potential energy V (r, t) of the test

particle is defined to be the amount of work we must supply to move the particle

to its present location from some fixed reference point, which we might take to be

r =∞. We will not bother to write V (r, t) explicitly, since we will not need it, but we

point out that it depends on the time t and on Rmax, and when differentiated gives

the correct gravitational force at any radius. By contrast, Veff(r) gives the correct

force only at the radius of the test particle, r = a(t)ri. The true potential energy

function V (r, t) gives no conservation law, since it is explicitly time-dependent,

which is why the quantity Veff(r) is useful.

To relate E to the total energy of the expanding sphere, we need to integrate over

the sphere to determine its total energy. These integrals are most easily carried out

by dividing the sphere into shells of radius r, and thickness dr, so that each shell

has a volume

dV = 4πr2 dr . (7)

(b) (10 points) Show that the total kinetic energy K of the sphere is given by

K = cKMR2
max,i

{
1

2
ȧ2(t)

}
, (8)

where cK is a numerical constant, M is the total mass of the sphere, and Rmax,i

is the initial radius of the sphere. Evaluate the numerical constant cK .

(c) (10 points) Show that the total potential energy of the sphere can similarly be

written as

U = cUMR2
max,i

{
−4π

3
G
ρi
a

}
. (9)

(Suggestion: calculate the total energy needed to assemble the sphere by bring-

ing in one shell of mass at a time from infinity.) Show that cU = cK , so that

the total energy of the sphere is given by

Etotal = cKMR2
max,iE . (10)
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PROBLEM 4: A POSSIBLE MODIFICATION OF NEWTON’S LAW
OF GRAVITY (20 points)

READ THIS: This problem was Problem 2 of Quiz 1 of 2011, and the solution is
posted as http://web.mit.edu/8.286/www/quiz11/ecqs1-1.pdf. Unlike the situation
with other problems, in this case you are encouraged to look at these solutions and
benefit from them. When you write your solution, you can even copy it verbatim
from these solutions if you wish, although obviously you will learn more if you think
about the solution and write your own version.

In Lecture Notes 3 we developed a Newtonian model of cosmology, by consid-
ering a uniform sphere of mass, centered at the origin, with initial mass density ρi
and an initial pattern of velocities corresponding to Hubble expansion: ~vi = Hi~r:

We denoted the radius at time t of a particle which started at radius ri by the
function r(ri, t). Assuming Newton’s law of gravity, we concluded that each particle
would experience an acceleration given by

~g = −GM(ri)

r2(ri, t)
r̂ ,

where M(ri) denotes the total mass contained initially in the region r < ri, given
by

M(ri) =
4π

3
r3
i ρi .

Suppose that the law of gravity is modified to contain a new, repulsive term,
producing an acceleration which grows as the nth power of the distance, with a
strength that is independent of the mass. That is, suppose ~g is given by

~g = −GM(ri)

r2(ri, t)
r̂ + γrn(ri, t) r̂ ,

http://web.mit.edu/8.286/www/quiz11/ecqs1-1.pdf
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where γ is a constant. The function r(ri, t) then obeys the differential equation

r̈ = −GM(ri)

r2(ri, t)
+ γrn(ri, t) .

(a) (4 points) As done in the lecture notes, we define

u(ri, t) ≡ r(ri, t)/ri .

Write the differential equation obeyed by u. (Hint: be sure that u is the only
time-dependent quantity in your equation; r, ρ, etc. must be rewritten in terms
of u, ρi, etc.)

(b) (4 points) For what value of the power n is the differential equation found in
part (a) independent of ri?

(c) (4 points) Write the initial conditions for u which, when combined with the
differential equation found in (a), uniquely determine the function u.

(d) (8 points) If all is going well, then you have learned that for a certain value of
n, the function u(ri, t) will in fact not depend on ri, so we can define

a(t) ≡ u(ri, t) .

Show, for this value of n, that the differential equation for a can be integrated
once to obtain an equation related to the conservation of energy. The desired
equation should include terms depending on a and ȧ, but not ä or any higher
derivatives.

Total points for Problem Set 3: 85.
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QUIZ DATES FOR THE TERM:
Quiz 1: Wednesday, October 3, 2018
Quiz 2: Monday, November 5, 2018
Quiz 3: Wednesday, December 5, 2018

PROBLEM 1: PHOTON TRAJECTORIES AND HORIZONS IN A FLAT
UNIVERSE WITH a(t) = bt1/2 (20 points)

The following questions all pertain to a flat universe, with a scale factor given by

a(t) = bt1/2 ,

where b is a constant and t is the time. We will learn later that this is the behavior of a
radiation-dominated flat universe.

(a) (2 points) If physical lengths are measured in meters, and coordinate lengths are
measured in notches, what are the units of a(t) and the constant b?

(b) (2 points) Find the Hubble expansion rate H(t).

(c) (2 points) Find the physical horizon distance `p,hor(t). Your answer should give
the horizon distance in physical units (e.g., meters) and not coordinate units (e.g.,
notches).

Consider two pieces of matter, A and B, at a coordinate distance `c from each other. We
will consider a photon that is emitted by A at some early time tA, traveling toward B. The

physical distance between A and B at the time of emission is of course `p,AB(tA) = bt
1/2
A `c,

which approaches zero as tA → 0.

(d) (2 points) What is the rate of change of the physical distance between A and B,
d`p,AB(t)/dt, at t = tA? Is the physical distance increasing or decreasing? Does the
rate of change approach zero, infinity, negative infinity, or a nonzero finite number
as tA → 0?

(e) (3 points) At what time tB is the photon received by B? As tA → 0, does tB
approach zero, infinity, or a nonzero finite number?

(f) (3 points) Calculate `p,γB(t), the physical distance between the photon and B at
time t, for tA ≤ t ≤ tB .

(g) (3 points) What is the rate of change of the physical distance between the photon
and B, d`p,γB(t)/dt, at the instant tA when the photon is emitted?

(h) (3 points) At what value of tA is this rate of change d`p,γB(t)/dt equal to zero? For
earlier values of tA, is the physical distance between the photon and B increasing
or decreasing at the time of emission? As tA → 0, does d`p,γB(t)/dt at the time of
emission approach zero, infinity, minus infinity, or a nonzero finite number?
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PROBLEM 2: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-

VERSE (35 points)

The following problem originated on Quiz 2 of 1992 (ancient history!), where it counted

30 points.

The equations describing the evolution of an open, matter-dominated universe were

given in Lecture Notes 4 as

ct = α (sinh θ − θ)

and
a√
κ

= α (cosh θ − 1) ,

where α is a constant with units of length. The following mathematical identities, which

you should know, may also prove useful on parts (e) and (f):

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . . .

a) (5 points) Find the Hubble expansion rate H as a function of α and θ.

b) (5 points) Find the mass density ρ as a function of α and θ.

c) (5 points) Find the mass density parameter Ω as a function of α and θ. As with

part (c) of the previous problem, the answer to this part appears in Lecture Notes 4.

However, you should show that you get the same answer by combining your answers

to parts (a) and (b) of this question.

d) (6 points) Find the physical value of the horizon distance, `p,horizon, as a function of

α and θ.

e) (7 points) For very small values of t, it is possible to use the first nonzero term of a

power-series expansion to express θ as a function of t, and then a as a function of t.

Give the expression for a(t) in this approximation. The approximation will be valid

for t� t∗. Estimate the value of t∗.

f) (7 points) Even though these equations describe an open universe, one still finds that

Ω approaches one for very early times. For t� t∗ (where t∗ is defined in part (e)),

the quantity 1 − Ω behaves as a power of t. Find the expression for 1 − Ω in this

approximation.
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PROBLEM 3: THE CRUNCH OF A CLOSED, MATTER-DOMINATED
UNIVERSE (25 points)

This is Problem 6.5 from Barbara Ryden’s Introduction to Cosmology, with some
paraphrasing to make it consistent with the language used in lecture.

Consider a closed universe containing only nonrelativistic matter. This is the closed
universe discussed in Lecture Notes 4, and it is also the “Big Crunch” model discussed
in Ryden’s section 6.1. At some time during the contracting phase (i.e., when θ > π), an
astronomer named Elbbuh Niwde discovers that nearby galaxies have blueshifts (−1 ≤
z < 0) proportional to their distance. He then measures the present values of the Hubble
expansion rate, H0, and the mass density parameter, Ω0. He finds, of course, that H0 < 0
(because he is in the contracting phase) and Ω0 > 1 (because the universe is closed). In
terms of H0 and Ω0, how long a time will elapse between Dr. Niwde’s observation at
t = t0 and the final Big Crunch at t = tCrunch = 2πα/c? Assuming that Dr. Niwde is
able to observe all objects within his horizon, what is the most blueshifted (i.e., most
negative) value of z that Dr. Niwde is able to see? What is the lookback time to an
object with this blueshift? (By lookback time, one means the difference between the time
of observation t0 and the time at which the light was emitted.)

PROBLEM 4: THE AGE OF A MATTER-DOMINATED UNIVERSE AS
Ω → 1 (15 points)

The age t of a matter-dominated universe, for any value of Ω, was given in Lecture
Notes 4 as

|H| t =



Ω

2(1− Ω)3/2

[
2
√

1− Ω

Ω
− arcsinh

(
2
√

1− Ω

Ω

)]
if Ω < 1

2/3 if Ω = 1

Ω

2(Ω− 1)3/2

[
arcsin

(
±2
√

Ω− 1

Ω

)
∓ 2
√

Ω− 1

Ω

]
if Ω > 1

(4.47)

It was claimed that this formula is continuous at Ω = 1. In this problem you are asked to
show half of this statement. Specifically, you should show that as Ω approaches 1 from
below, the expression for |H|t approaches 2/3. In doing this, you may find it useful to
use the Taylor expansion for arcsinh(x) about x = 0:

arcsinh(x) = x− (1)2

3!
x3 +

(3 · 1)2

5!
x5 − (5 · 3 · 1)2

7!
x7 + . . . .

The proof of continuity as Ω → 0 from above is of course very similar, and you are not
asked to show it.
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PROBLEM 5: ISOTROPY ABOUT TWO POINTS IN EUCLIDEAN
SPACES

(This problem is not required, but can be done for 15 points extra credit. I’d like to give
you two weeks to think about it, so you should turn it in with Problem Set 5 on October
19.)

In Steven Weinberg’s The First Three Minutes, in Chapter 2 on page 24, he gives
an argument to show that if a space is isotropic about two distinct points, then it is
necessarily homogeneous. He is assuming Euclidean geometry, although he is not explicit
about this point. (The statement is simply not true if one allows non-Euclidean spaces
— we’ll discuss this.) Furthermore, the argument is given in the context of a universe
with only two space dimensions, but it could easily be generalized to three, and we will
not concern ourselves with remedying this simplification. The statement is true for two-
dimensional Euclidean spaces, but Weinberg’s argument is not complete. To show that
isotropy about two galaxies, 1 and 2, implies that the conditions at any two points A
and B must be identical, he constructs two circles. One circle is centered on Galaxy 1
and goes through A, and the other is centered on Galaxy 2 and goes through B. He then
argues that the conditions at A and B must both be identical to the conditions at the
point C, where the circles intersect. The problem, however, is that the two circles need
not intersect. One circle can be completely inside the other, or the two circles can be
separated and disjoint. Thus Weinberg’s proof is valid for some pairs of points A and
B, but cannot be applied to all cases. For 15 points of extra credit, devise a proof that
holds in all cases. We have not established axioms for Euclidean geometry, but you may
use in your proof any well-known fact about Euclidean geometry.

Total points for Problem Set 4: 95, plus 15 points of extra credit.
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PROBLEM 1: A CIRCLE IN A NON-EUCLIDEAN GEOMETRY
(15 points)

Consider a three-dimensional space described by the following metric:

ds2 = R2

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
.

Here R and k are constants, where k will always have one of the values 1, −1, or 0. θ
and φ are angular coordinates with the usual properties: 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π,
where φ = 2π and φ = 0 are identified. r is a radial coordinate, which runs from 0 to 1 if
k = 1, and otherwise from 0 to ∞. (This is the Robertson-Walker metric of Eq. (5.27) of
Lecture Notes 5, evaluated at some particular time t, with R ≡ a(t). You should be able
to work this problem, however, whether or not you have gotten that far. The problem
requires only that you understand what a metric means.) Consider a circle described by
the equations

z = 0

x2 + y2 = r20 ,

or equivalently by the angular coordinates

r = r0

θ = π/2 .

(a) (5 points) Find the circumference S of this circle. Hint: break the circle into in-
finitesimal segments of angular size dφ, calculate the arc length of such a segment,
and integrate.

(b) (5 points) Find the radius ρ of this circle. Note that ρ is the length of a line which
runs from the origin to the circle (r = r0), along a trajectory of θ = π/2 and φ =
constant. Hint: Break the line into infinitesimal segments of coordinate length dr,
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calculate the length of such a segment, and integrate. Consider the case of open and
closed universes separately, and take k = ±1. (If you don’t remember why we can
take k = ±1, see the section called “Units” in Lecture Notes 3,). You will want the
following integrals: ∫

dr√
1− r2

= sin−1 r

and ∫
dr√

1 + r2
= sinh−1 r .

(c) (5 points) Express the circumference S in terms of the radius ρ. This result is
independent of the coordinate system which was used for the calculation, since S
and ρ are both measurable quantities. Since the space described by this metric
is homogeneous and isotropic, the answer does not depend on where the circle is
located or on how it is oriented. For the two cases of open and closed universes,
state whether S is larger or smaller than the value it would have for a Euclidean
circle of radius ρ.

PROBLEM 2: VOLUME OF A CLOSED UNIVERSE (15 points)

Calculate the total volume of a closed universe, as described by the metric of
Eq. (5.14) of Lecture Notes 5:

ds2 = R2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)]
.

Break the volume up into spherical shells of infinitesimal thickness, extending from ψ to
ψ + dψ:
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By comparing Eq. (5.14) with Eq. (5.8),

ds2 = R2
(
dθ2 + sin2 θ dφ2

)
,

the metric for the surface of a sphere, one can see that as long as ψ is held fixed, the
metric for varying θ and φ is the same as that for a spherical surface of radius R sinψ.
Thus the area of the spherical surface is 4πR2 sin2 ψ. To find the volume, multiply this
area by the thickness of the shell (which you can read off from the metric), and then
integrate over the full range of ψ, from 0 to π.

PROBLEM 3: SURFACE BRIGHTNESS IN A CLOSED UNIVERSE (25
points)

The spacetime metric for a homogeneous, isotropic, closed universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more convenient
to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√

1− r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

The form of a(t) depends on the nature of the matter in the universe, but for this problem
you should consider a(t) to be an arbitrary function. You should simplify your answers
as far as it is possible without knowing the function a(t).

(a) (10 points) Suppose that the Earth is at the center of these coordinates, and that
we observe a spherical galaxy that is located at ψ = ψG. The light that we see was
emitted from the galaxy at time tG, and is being received today, at a time that we
call t0. At the time of emission, the galaxy had a power output P (which could
be measured, for example, in watts, where 1 watt = 1 joule/sec). The power was
radiated uniformly in all directions, in the form of photons. What is the radiation
energy flux J from this galaxy at the Earth today? Energy flux (which might be
measured in joule-m−2-sec−1) is defined as the energy per unit area per unit time
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striking a surface that is orthogonal to the direction of the energy flow. [Hint: it is
easiest to use a comoving coordinate system with the radiating galaxy at the origin.]

(b) (10 points) Suppose that the physical diameter of the galaxy at time tG was w. Find
the apparent angular size ∆θ (measured from one edge to the other) of the galaxy
as it would be observed from Earth today.

(c) (5 points) The surface brightness σ of the distant galaxy is defined to be the energy
flux J per solid angle subtended by the galaxy.* Calculate the surface brightness σ
of the galaxy described in parts (a) and (b). [Hint: if you have the right answer, it
can be written in terms of P , w, and the redshift z, without any reference to ψG.
The rapid decrease in σ with z means that high-z galaxies are difficult to distinguish
from the night sky.]

PROBLEM 4: TRAJECTORIES AND DISTANCES IN AN OPEN UNI-
VERSE (30 points)

The spacetime metric for a homogeneous, isotropic, open universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1 + r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = −1. As in Problem 3, for the discussion of radial motion it is
convenient to introduce an alternative radial coordinate ψ, which in this case is related
to r by

r = sinhψ .

* Definition of solid angle: To define the solid angle subtended by the galaxy, imagine
surrounding the observer by a sphere of arbitrary radius r. The sphere should be small
compared to cosmological distances, so that Euclidean geometry is valid within the sphere.
If a picture of the galaxy is painted on the surface of the sphere so that it just covers the
real image, then the solid angle, in steradians, is the area of the picture on the sphere,
divided by r2.
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Then
dr√

1 + r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sinh2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

You should treat the function a(t) as a given function. You should simplify your answers

as far as it is possible without knowing explicitly the function a(t).

(a) (5 points) Suppose that the Earth is at the origin of the coordinate system (ψ = 0),

and that at the present time, t0, we receive a light pulse from a distant galaxy G,

located at ψ = ψG. Write down an equation which determines the time tG at which

the light pulse left the galaxy. (You may assume that the light pulse travels on a

“null” trajectory, which means that dτ = 0 for any segment of it. Since you don’t

know a(t) you cannot solve this equation, so please do not try.)

(b) (5 points) What is the redshift zG of the light from galaxy G? (Your answer may

depend on tG, as well as ψG, t0, or any property of the function a(t).)

(c) (5 points) To estimate the number of galaxies that one expects to see in a given

range of redshifts, it is necessary to know the volume of the region of space that

corresponds to this range. Write an expression for the present value of the volume

that corresponds to redshifts smaller than that of galaxy G. (You may leave your

answer in the form of a definite integral, which may be expressed in terms of ψG,

tG, t0, zG, or the function a(t).)

(d) (5 points) There are a number of different ways of defining distances in cosmology,

and generally they are not equal to each other. One choice is called proper dis-

tance, which corresponds to the distance that one could in principle measure with

rulers. The proper distance is defined as the total length of a network of rulers that

are laid end to end from here to the distant galaxy. The rulers have different veloci-

ties, because each is at rest with respect to the matter in its own vicinity. They are

arranged so that, at the present instant of time, each ruler just touches its neighbors

on either side. Write down an expression for the proper distance `prop of galaxy G.

(e) (5 points) Another common definition of distance is angular size distance, de-

termined by measuring the apparent size of an object of known physical size. In a

static, Euclidean space, a small sphere of diameter w at a distance ` will subtend an
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angle ∆θ = w/`:

Motivated by this relation, cosmologists define the angular size distance `ang of an
object by

`ang ≡
w

∆θ
.

What is the angular size distance `ang of galaxy G?

(f) (5 points) A third common definition of distance is called luminosity distance,
which is determined by measuring the apparent brightness of an object for which
the actual total power output is known. In a static, Euclidean space, the energy flux
J received from a source of power P at a distance ` is given by J = P/(4π`2):

Cosmologists therefore define the luminosity distance by

`lum ≡
√

P

4πJ
.

Find the luminosity distance `lum of galaxy G. (Hint: the Robertson-Walker coor-
dinates can be shifted so that the galaxy G is at the origin.)
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PROBLEM 5: THE KLEIN DESCRIPTION OF THE G-B-L GEOMETRY

(This problem is not required, but can be done for 15 points extra credit.)

I stated in Lecture Notes 5 that the space invented by Klein, described by the distance
relation

cosh

[
d(1, 2)

a

]
=

1− x1x2 − y1y2√
1− x21 − y21

√
1− x22 − y22

,

where
x2 + y2 < 1 ,

is a two-dimensional space of constant negative curvature. In other words, this is just a
two-dimensional Robertson–Walker metric, as would be described by a two-dimensional
version of Eq. (5.27), with k = −1:

ds2 = a2
{

dr2

1 + r2
+ r2dθ2

}
.

The problem is to prove the equivalence.

(a) (5 points) As a first step, show that if x and y are replaced by the polar coordinates
defined by

x = u cos θ

y = u sin θ ,

then the distance equation can be rewritten as

cosh

[
d(1, 2)

a

]
=

1− u1u2 cos(θ1 − θ2)√
1− u21

√
1− u22

.

(b) (5 points) The next step is to derive the metric from the distance function above.
Let

u1 = u

u2 = u+ du

θ1 = θ ,

θ2 = θ + dθ ,

and
d(1, 2) = ds .

Insert these expressions into the distance function, expand everything to second order
in the infinitesimal quantities, and show that

ds2 = a2

{
du2

(1− u2)
2 +

u2dθ2

1− u2

}
.

(This part is rather messy, but you should be able to do it.)

(c) (5 points) Now find the relationship between r and u and show that the two metric
functions are identical. Hint: The coefficients of dθ2 must be the same in the two
cases. Can you now see why Klein had to impose the condition x2 + y2 < 1?
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REMINDER: The following extra credit problem from Problem Set 4 is to be turned
in with this problem set, if you choose to do it:

PROBLEM 5 (PROBLEM SET 4): ISOTROPY ABOUT TWO POINTS IN
EUCLIDEAN SPACES

(This problem is not required, but can be done for 15 points extra credit. It was first
posted with Problem Set 4, but is to be turned in with Problem Set 5.)

In Steven Weinberg’s The First Three Minutes, in Chapter 2 on page 24, he gives
an argument to show that if a space is isotropic about two distinct points, then it is
necessarily homogeneous. He is assuming Euclidean geometry, although he is not explicit
about this point. (The statement is simply not true if one allows non-Euclidean spaces
— we’ll discuss this.) Furthermore, the argument is given in the context of a universe
with only two space dimensions, but it could easily be generalized to three, and we will
not concern ourselves with remedying this simplification. The statement is true for two-
dimensional Euclidean spaces, but Weinberg’s argument is not complete. To show that
isotropy about two galaxies, 1 and 2, implies that the conditions at any two points A
and B must be identical, he constructs two circles. One circle is centered on Galaxy 1
and goes through A, and the other is centered on Galaxy 2 and goes through B. He then
argues that the conditions at A and B must both be identical to the conditions at the
point C, where the circles intersect. The problem, however, is that the two circles need
not intersect. One circle can be completely inside the other, or the two circles can be
separated and disjoint. Thus Weinberg’s proof is valid for some pairs of points A and
B, but cannot be applied to all cases. For 15 points of extra credit, devise a proof that
holds in all cases. We have not established axioms for Euclidean geometry, but you may
use in your proof any well-known fact about Euclidean geometry.

Total points for Problem Set 5: 85, plus up to 15 points extra credit.
Also up to 15 points extra credit for Problem Set 4.
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DECEMBER

MON TUES WED THURS FRI

December 3
Lecture 22

4 5
Quiz 3

6 7

December 10
Lecture 23

11 12
Last Class
PS 9 due

13 14

PROBLEM 1: GEODESICS IN A FLAT UNIVERSE (25 points)

According to general relativity, in the absence of any non-gravitational forces a
particle will travel along a spacetime geodesic. In this sense, gravity is reduced to a
distortion in spacetime.

Consider the case of a flat (i.e., k = 0) Robertson–Walker metric, which has the
simple form

ds2 = −c2dt2 + a2(t)
[
dx2 + dy2 + dz2

]
.

Since the spatial metric is flat, we have the option of writing it in terms of Cartesian
rather than polar coordinates. Now consider a particle which moves along the x-axis.
(Note that the galaxies are on the average at rest in this system, but one can still discuss
the trajectory of a particle which moves through the model universe.)

(a) (8 points) Use the geodesic equation to show that the coordinate velocity computed
with respect to proper time (i.e., dx/dτ) falls off as 1/a2(t).

(b) (8 points) Use the expression for the spacetime metric to relate dx/dt to dx/dτ .

(c) (9 points) The physical velocity of the particle relative to the galaxies that it is
passing is given by

v = a(t)
dx

dt
.

Show that the momentum of the particle, defined relativistically by

p =
mv√

1− v2/c2

falls off as 1/a(t). (This implies, by the way, that if the particle were described as
a quantum mechanical wave with wavelength λ = h/|~p |, then its wavelength would
stretch with the expansion of the universe, in the same way that the wavelength of
light is redshifted.)
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PROBLEM 2: METRIC OF A STATIC GRAVITATIONAL FIELD (25
points)

In this problem we will consider the metric

ds2 = −
[
c2 + 2φ(~x)

]
dt2 +

3∑
i=1

(
dxi
)2

,

which describes a static gravitational field. Here i runs from 1 to 3, with the identifications
x1 ≡ x, x2 ≡ y, and x3 ≡ z. The function φ(~x) depends only on the spatial variables
~x ≡ (x1, x2, x3), and not on the time coordinate t.

(a) (5 points) Suppose that a radio transmitter, located at ~xe, emits a series of evenly
spaced pulses. The pulses are separated by a proper time interval ∆Te, as measured
by a clock at the same location. What is the coordinate time interval ∆te between
the emission of the pulses? (I.e., ∆te is the difference between the time coordinate
t at the emission of one pulse and the time coordinate t at the emission of the next
pulse.)

(b) (5 points) The pulses are received by an observer at ~xr, who measures the time
of arrival of each pulse. What is the coordinate time interval ∆tr between the
reception of successive pulses?

(c) (5 points) The observer uses his own clocks to measure the proper time interval ∆Tr
between the reception of successive pulses. Find this time interval, and also the
redshift z, defined by

1 + z =
∆Tr
∆Te

.

First compute an exact expression for z, and then expand the answer to lowest order
in φ(~x) to obtain a weak-field approximation. (This weak-field approximation is in
fact highly accurate in all terrestrial and solar system applications.)

(d) (5 points) A freely falling particle travels on a spacetime geodesic xµ(τ), where τ is
the proper time. (I.e., τ is the time that would be measured by a clock moving with
the particle.) The trajectory is described by the geodesic equation

d

dτ

(
gµν

dxν

dτ

)
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,

where the Greek indices (µ, ν, λ, σ, etc.) run from 0 to 3, and are summed over when
repeated. Calculate an explicit expression for

d2xi

dτ2
,
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valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dτ or dxi/dτ
in the answer.)

(e) (5 points) In the weak-field nonrelativistic-velocity approximation, the answer to the
previous part reduces to

d2xi

dt2
= −∂iφ ,

so φ(~x) can be identified as the Newtonian gravitational potential. Use this fact to
estimate the gravitational redshift z of a photon that rises from the floor of this room
to the ceiling (say 4 meters). (One significant figure will be sufficient.)

PROBLEM 3: CIRCULAR ORBITS IN A SCHWARZSCHILD METRIC (30
points)

READ THIS: This problem was Problem 16 of Review Problems for Quiz 2 of 2011,
and the solution is posted as http://web.mit.edu/8.286/www/quiz11/ecqr2-1.pdf. Like
Problem 4 of Problem Set 3, but unlike all other homework problems so far, in this case
you are encouraged to look at the solutions and benefit from them. When you write
your solution, you can even copy it verbatim from these solutions if you wish, although
obviously you will learn more if you think about the solution and write your own version.

The Schwarzschild metric, which describes the external gravitational field of any
spherically symmetric distribution of mass (including black holes), is given by

ds2 = −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 ,

where M is the total mass of the object, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and φ = 2π is
identified with φ = 0. We will be concerned only with motion outside the Schwarzschild
horizon RS = 2GM/c2, so we can take r > RS . (This restriction allows us to avoid the
complications of understanding the effects of the singularity at r = RS .) In this problem
we will use the geodesic equation to calculate the behavior of circular orbits in this metric.
We will assume a perfectly circular orbit in the x-y plane: the radial coordinate r is fixed,
θ = 90◦, and φ = ωt, for some angular velocity ω.

(a) (7 points) Use the metric to find the proper time interval dτ for a segment of the
path corresponding to a coordinate time interval dt. Note that dτ represents the
time that would actually be measured by a clock moving with the orbiting body.
Your result should show that

dτ

dt
=

√
1− 2GM

rc2
− r2ω2

c2
.

Note that for M = 0 this reduces to the special relativistic relation dτ/dt =√
1− v2/c2, but the extra term proportional to M describes an effect that is new

http://web.mit.edu/8.286/www/quiz11/ecqr2-1.pdf
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with general relativity— the gravitational field causes clocks to slow down, just as
motion does.

(b) (7 points) Show that the geodesic equation of motion (Eq. (5.65)) for one of the
coordinates takes the form

0 =
1

2

∂gφφ
∂r

(
dφ

dτ

)2

+
1

2

∂gtt
∂r

(
dt

dτ

)2

.

(c) (8 points) Show that the above equation implies

r

(
dφ

dτ

)2

=
GM

r2

(
dt

dτ

)2

,

which in turn implies that

rω2 =
GM

r2
.

Thus, the relation between r and ω is exactly the same as in Newtonian mechanics.
[Note, however, that this does not really mean that general relativity has no effect.
First, ω has been defined by dφ/dt, where t is a time coordinate which is not the
same as the proper time τ that would be measured by a clock on the orbiting body.
Second, r does not really have the same meaning as in the Newtonian calculation,
since it is not the measured distance from the center of motion. Measured distances,
you will recall, are calculated by integrating the metric, as for example in Problem
1 of Problem Set 5, A Circle in a Non-Euclidean Geometry. Since the angular (dθ2

and dφ2) terms in the Schwarzschild metric are unaffected by the mass, however, it
can be seen that the circumference of the circle is equal to 2πr, as in the Newtonian
calculation.]

(d) (8 points) Show that circular orbits around a black hole have a minimum value of
the radial coordinate r, which is larger than RS . What is it?

PROBLEM 4: GAS PRESSURE AND ENERGY CONSERVATION (25
points)

In this problem we will pursue the implications of the conservation of energy. Con-
sider first a gas contained in a chamber with a movable piston, as shown below:
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Let U denote the total energy of the gas, and let p denote the pressure. Suppose that the
piston is moved a distance dx to the right. (We suppose that the motion is slow, so that
the gas particles have time to respond and to maintain a uniform pressure throughout
the volume.) The gas exerts a force pA on the piston, so the gas does work dW = pAdx
as the piston is moved. Note that the volume increases by an amount dV = Adx, so
dW = pdV . The energy of the gas decreases by this amount, so

dU = −pdV . (P4.1)

It turns out that this relation is valid whenever the volume of a gas is changed, regardless
of the shape of the volume.

Now consider a homogeneous, isotropic, expanding universe, described by a scale
factor a(t). Let u denote the energy density of the gas that fills it. (Remember that
u = ρc2, where ρ is the mass density of the gas.) We will consider a fixed coordinate
volume Vcoord, so the physical volume will vary as

Vphys(t) = a3(t)Vcoord . (P4.2)

The energy of the gas in this region is then given by

U = Vphysu . (P4.3)

(a) (9 points) Using these relations, show that

d

dt

(
a3ρc2

)
= −p d

dt
(a3) , (P4.4)

and then that

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, (P4.5)

where the dot denotes differentiation with respect to t.

(b) (8 points) The scale factor evolves according to the relation(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
. (P4.6)

Using Eqs. (P4.5) and (P4.6), show that

ä = −4π

3
G

(
ρ+

3p

c2

)
a . (P4.7)

This equation describes directly the deceleration of the cosmic expansion. Note that
there are contributions from the mass density ρ, but also from the pressure p.

(c) (8 points) So far our equations have been valid for any sort of a gas, but let us now
specialize to the case of black-body radiation. For this case we know that ρ = bT 4,
where b is a constant and T is the temperature. We also know that as the universe
expands, aT remains constant. Using these facts and Eq. (P4.5), find an expression
for p in terms of ρ.
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PROBLEM 5: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

A radiation-dominated universe behaves differently from a matter-dominated uni-
verse because the pressure of the radiation is significant. In this problem we explore the
role of pressure for several fictitious forms of matter.

(a) (8 points) For the first fictitious form of matter, the mass density ρ decreases as the
scale factor a(t) grows, with the relation

ρ(t) ∝ 1

a6(t)
.

What is the pressure of this form of matter? [Hint: the answer is proportional to
the mass density.]

(b) (9 points) Find the behavior of the scale factor a(t) for a flat universe dominated
by the form of matter described in part (a). You should be able to determine the
function a(t) up to a constant factor.

(c) (8 points) Now consider a universe dominated by a different form of fictitious matter,
with a pressure given by

p =
1

2
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1

an(t)
.

Find the power n.

PROBLEM 6: TIME EVOLUTION OF A UNIVERSE WITH MYSTERI-
OUS STUFF (15 points)

Suppose that a model universe is filled with a peculiar form of matter for which

ρ ∝ 1

a5(t)
.

Assuming that the model universe is flat, calculate

(a) (4 points) The behavior of the scale factor, a(t). You should be able to find a(t) up
to an arbitrary constant of proportionality.

(b) (3 points) The value of the Hubble parameter H(t), as a function of t.

(c) (4 points) The physical horizon distance, `p,horizon(t).

(d) (4 points) The mass density ρ(t).

Total points for Problem Set 6: 145.
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PROBLEM 1: EFFECT OF AN EXTRA NEUTRINO SPECIES (15 points)

According to the standard assumptions (which were used in the lecture notes), there
are three species of effectively massless neutrinos. In the temperature range of 1 MeV <
kT < 100 MeV, the mass density of the universe is believed to have been dominated by
the black-body radiation of photons, electron-positron pairs, and these neutrinos, all of
which were in thermal equilibrium.

(a) (5 points) Under these assumptions, how long did it take (starting from the instant
of the big bang) for the temperature to fall to the value such that kT = 1 MeV? (In
this part and the next, you may assume that the period when kT > 100 MeV was so
short that one can calculate as if the value of g that you find for 1 MeV < kT < 100
MeV can be used for earlier times as well.)

(b) (5 points) How much time would it have taken if there were one other species of
massless neutrino, in addition to the three which we are currently assuming?

(c) (5 points) What would be the mass density of the universe when kT = 1 MeV under
the standard assumptions, and what would it be if there were one other species of
massless neutrino?

PROBLEM 2: ENTROPY AND THE BACKGROUND NEUTRINO TEM-
PERATURE (15 points)

The formula for the entropy density of black-body radiation is given in Lecture Notes
6. The derivation of this formula has been left to the statistical mechanics course that
you either have taken or hopefully will take. For our purposes, the important point is
that the early universe remains very close to thermal equilibrium, and therefore entropy
is conserved. The conservation of entropy applies even during periods when particles,
such as electron-positron pairs, are “freezing out” of the thermal equilibrium mix. Since
total entropy is conserved, the entropy density falls off as 1/a3(t).

When the electron-positron pairs disappear from the thermal equilibrium mixture as
kT falls below mec

2 = 0.511 MeV, the weak interactions have such low cross sections that
the neutrinos have essentially decoupled. To a good approximation, all of the energy and
entropy released by the annihilation of electrons and positrons is added to the photon
gas, and the neutrinos are unaffected. Use the conservation of entropy to show that as
electron-positron pair annihilation takes place, aTγ increases by a factor of (11/4)1/3,
while aTν remains constant. It follows that after the disappearance of the electron-
positron pairs, Tν/Tγ = (4/11)1/3. As far as we know, nothing happens that significantly
affects this ratio right up to the present day. So we expect today a background of thermal
neutrinos which are slightly colder than the 2.7◦K background of photons.

Added note: In principle the heating of the photon gas due to electron-positron
annihilation can also be calculated by using energy conservation, but it is much more
difficult. Since

ρ̇ = −3H
(
ρ+

p

c2

)
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(this was Eq. (6.36) of Lecture Notes 6), one needs to know p(t) to understand the changes
in energy density. But as the electron-positron pairs are disappearing, kT is comparable
to the electon rest mass mec

2, and the formula for the thermal equilibrium pressure under
these circumstances is complicated.

PROBLEM 3: FREEZE-OUT OF MUONS (25 points)

A particle called the muon seems to be essentially identical to the electron, except
that it is heavier— the mass/energy of a muon is 106 MeV, compared to 0.511 MeV for
the electron. The muon (µ−) has the same charge as an electron, denoted by −e. There
is also an antimuon (µ+), analogous to the positron, with charge +e. The muon and
antimuon have the same spin as the electron. There is no known particle with a mass
between that of an electron and that of a muon.

(a) The formula for the energy density of black-body radiation, as given by Eq. (6.48)
of the lecture notes,

u = g
π2

30

(kT )4

(h̄c)3
,

is written in terms of a normalization constant g. What is the value of g for the
muons, taking µ+ and µ− together?

(b) When kT is just above 106 MeV as the universe cools, what particles besides the
muons are contained in the thermal radiation that fills the universe? What is the
contribution to g from each of these particles?

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium
radiation. At these temperatures all of the other particles in the black-body radiation
are interacting fast enough to maintain equilibrium, so the heat given off from the
muons is shared among all the other particles. Letting a denote the Robertson-
Walker scale factor, by what factor does the quantity aT increase when the muons
disappear?

PROBLEM 4: THE REDSHIFT OF THE COSMIC MICROWAVE BACK-
GROUND (25 points)

It was mentioned in Lecture Notes 6 that the black-body spectrum has the peculiar
feature that it maintains its form under uniform redshift. That is, as the universe expands,
even if the photons do not interact with anything, they will continue to be described by a
black-body spectrum, although at a temperature that decreases as the universe expands.
Thus, even though the cosmic microwave background (CMB) has not been interacting
significantly with matter since 350,000 years after the big bang, the radiation today still
has a black-body spectrum. In this problem we will demonstrate this important property
of the black-body spectrum.
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The spectral energy density ρν(ν, T ) for the thermal (black-body) radiation of pho-
tons at temperature T was stated in Lecture Notes 6 as Eq. (6.71), which we can rewrite
as

ρν(ν, T ) =
16π2h̄ν3

c3
1

ehν/kT − 1
, (4.1)

where h = 2πh̄ is Planck’s original constant. ρν(ν, T ) dν is the energy per unit volume
carried by photons whose frequency is in the interval [ν, ν + dν]. In this problem we will
assume that this formula holds at some initial time t1, when the temperature had some
value T1. We will let ρ̃(ν, t) denote the spectral distribution for photons in the universe,
which is a function of frequency ν and time t. Thus, our assumption about the initial
condition can be expressed as

ρ̃(ν, t1) = ρν(ν, T1) . (4.2)

The photons redshift as the universe expands, and to a good approximation the
redshift and the dilution of photons due to the expansion are the only physical effects
that cause the distribution of photons to evolve. Thus, using our knowledge of the
redshift, we can calculate the spectral distribution ρ̃(ν, t2) at some later time t2 > t1. It
is not obvious that ρ̃(ν, t2) will be a thermal distribution, but in fact we will be able to
show that

ρ̃(ν, t2) = ρ
(
ν, T (t2)

)
, (4.3)

where in fact T (t2) will agree with what we already know about the evolution of T in a
radiation-dominated universe:

T (t2) =
a(t1)

a(t2)
T1 . (4.4)

To follow the evolution of the photons from time t1 to time t2, we can imagine select-
ing a region of comoving coordinates with coordinate volume Vc. Within this comoving
volume, we can imagine tagging all the photons in a specified infinitesimal range of fre-
quencies, those between ν1 and ν1 + dν1. Recalling that the energy of each such photon
is hν, the number dN1 of tagged photons is then

dN1 =
ρ̃(ν1, t1) a3(t1)Vc dν1

hν1
. (4.5)

(a) We now wish to follow the photons in this frequency range from time t1 to time t2,
during which time each photon redshifts. At the latter time we can denote the range
of frequencies by ν2 to ν2 +dν2. Express ν2 and dν2 in terms of ν1 and dν1, assuming
that the scale factor a(t) is given.

(b) At time t2 we can imagine tagging all the photons in the frequency range ν2 to
ν2 + dν2 that are found in the original comoving region with coordinate volume
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Vc. Explain why the number dN2 of such photons, on average, will equal dN1 as
calculated in Eq. (4.5).

(c) Since ρ̃(ν, t2) denotes the spectral energy density at time t2, we can write

dN2 =
ρ̃(ν2, t2) a3(t2)Vc dν2

hν2
, (4.6)

using the same logic as in Eq. (4.5). Use dN2 = dN1 to show that

ρ̃(ν2, t2) =
a3(t1)

a3(t2)
ρ̃(ν1, t1) . (4.7)

Use the above equation to show that Eq. (4.3) is satisfied, for T (t) given by Eq. (4.4).

Total points for Problem Set 7: 80.
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Quiz 3, which will be Wednesday, December 5. There will also be a Problem Set 10, to
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READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, Chapter
11 (Inflation and the Very Early Universe.) Also read Inflation and the New Era of
High-Precision Cosmology, by Alan Guth, written for the MIT Physics Department
annual newsletter, 2002. It is available at

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf

The data quoted in the article about the nonuniformities of the cosmic microwave
background radiation has since been superceded by much better data, but the con-
clusions have not changed. They have only gotten stronger.
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PROBLEM 1: BIG BANG NUCLEOSYNTHESIS (20 points)

The calculations of big bang nucleosynthesis depend on a large number of measured
parameters. Below you are asked to qualitatively describe the effects of changing some
of these parameters. Include a sentence or two to explain each of your answers. (These
topics have not been discussed in class, but you are expected to be able to answer the
questions on the basis of your readings in Weinberg’s and Ryden’s books.)

(a) (5 points) Suppose an extra neutrino species is added to the calculation. Would the
predicted helium abundance go up or down?

(b) (5 points) Suppose the weak interactions were stronger than they actually are, so that
the thermal equilibrium distribution between neutrons and protons were maintained
until kT ≈ 0.25 MeV. Would the predicted helium abundance be larger or smaller
than in the standard model?

(c) (5 points) Suppose the proton-neutron mass difference were larger than the actual
value of 1.29 MeV/c2. Would the predicted helium abundance be larger or smaller
than in the standard calculation?

(d) (5 points) The standard theory of big bang nucleosynthesis assumes that the matter
in the universe was distributed homogeneously during the era of nucleosynthesis,
but the alternative possibility of inhomogeneous big-bang nucleosynthesis has been
discussed since the 1980s. Inhomogeneous nucleosynthesis hinges on the hypothesis
that baryons became clumped during a phase transition at t ≈ 10−6 second, when
the hot quark soup converted to a gas of mainly protons, neutrons, and in the early
stages, pions. The baryons would then be concentrated in small nuggets, with a
comparatively low density outside of these nuggets. After the phase transition but
before nucleosynthesis, the neutrons would have the opportunity to diffuse away from
these nuggets, becoming more or less uniformly distributed in space. The protons,
however, since they are charged, interact electromagnetically with the plasma that
fills the universe, and therefore have a much shorter mean free path than the neu-
trons. Most of the protons, therefore, remain concentrated in the nuggets. Does this
scenario result in an increase or a decrease in the expected helium abundance?
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PROBLEM 2: BRIGHTNESS VS. REDSHIFT WITH A POSSIBLE COS-
MOLOGICAL CONSTANT (25 points)

In Lecture Notes 7, we derived the relation between the power output P of a source
and the energy flux J , for the case of a closed universe:

J =
PH2

0 |Ωk,0|
4π(1 + zS)2c2 sin2 ψ(zS)

,

where

ψ(zS) =
√
|Ωk,0|

∫ zS

0

dz√
Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2

.

Here zS denotes the observed redshift, H0 denotes the present value of the Hub-
ble expansion rate, Ωm,0, Ωrad,0, and Ωvac,0 denote the present contributions to Ω
from nonrelativistic matter, radiation, and vacuum energy, respectively, and Ωk,0 ≡
1− Ωm,0 − Ωrad,0 − Ωvac,0.

(a) Derive the corresponding formula for the case of an open universe. You can of course
follow the same logic as the derivation in the lecture notes, but the solution you write
should be complete and self-contained. (I.e., you should NOT say “the derivation
is the same as the lecture notes except for . . . .”)

(b) Derive the corresponding formula for the case of a flat universe. Here there is of
course no need to repeat anything that you have already done in part (a). If you
wish you can start with the answer for an open or closed universe, taking the limit as
k → 0. The limit is delicate, however, because both the numerator and denominator
of the equation for J vanish as Ωk,0 → 0.

PROBLEM 3: AGE OF A UNIVERSE WITH MYSTERIOUS STUFF (20
points)

READ THIS: This problem was Problem 8 of Review Problems for Quiz 3 of 2011,
and the solution is posted as http://web.mit.edu/8.286/www/quiz11/ecqr3-1.pdf. Like
Problem 4 of Problem Set 3 and Problem 3 of Problem Set 6, but unlike all other homework
problems so far, in this case you are encouraged to look at the solutions and benefit from
them. When you write your solution, you can even copy it verbatim from these solutions
if you wish, although obviously you will learn more if you think about the solution and
write your own version.

Consider a universe that contains nonrelativistic matter, radiation, vacuum energy,
and the same mysterious stuff that was introduced in Problem 7 of Review Problems
for Quiz 3, from 2011. Since the mass density of mysterious stuff falls off as 1/

√
V , where

V is the volume, it follows that in an expanding universe the mass density of mysterious
stuff falls off as 1/a3/2(t).

http://web.mit.edu/8.286/www/quiz11/ecqr3-1.pdf
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Suppose that you are given the present value of the Hubble expansion rate H0, and

also the present values of the contributions to Ω ≡ ρ/ρc from each of the constituents:

Ωm,0 (nonrelativistic matter), Ωr,0 (radiation), Ωv,0 (vacuum energy density), and Ωms,0

(mysterious stuff). Our goal is to express the age of the universe t0 in terms of these

quantities.

(a) (10 points) Let x(t) denote the ratio

x(t) ≡ a(t)

a(t0)

for an arbitrary time t. Write an expression for the total mass density of the universe

ρ(t) in terms of x(t) and the given quantities described above.

(b) (10 points) Write an integral expression for the age of the universe t0. The expression

should depend only on H0 and the various contributions to Ω0 listed above (Ωm,0 ,

Ωr,0 , etc.), but it might include x as a variable of integration.

PROBLEM 4: SHARED CAUSAL PAST (20 points)

Recently several of my colleagues published a paper (Andrew S. Friedman, David

I. Kaiser, and Jason Gallicchio, “The Shared Causal Pasts and Futures of Cosmolog-

ical Events,” http://arxiv.org/abs/arXiv:1305.3943, Physical Review D, Vol. 88, arti-

cle 044038 (2013)) in which they investigated the causal connections in the standard

cosmological model. In particular, they calculated the present redshift z of a distant

quasar which has the property that a light signal, if sent from our own location at the

instant of the big bang, would have just enough time to reach the quasar and return

to us, so that we could see the reflection of the signal at the present time. They found

z = 3.65, using Ωmatter,0 = 0.315, Ωrad,0 = 9.29 × 10−5, Ωvac,0 = 0.685 − Ωrad,0, and

H0 = 67.3 km-s−1-Mpc−1. Feel free to read their paper if you like. Your job, however, is

to carry out an independent calculation to find out if they got it right.

(a) (15 points) Write an equation that determines this redshift z. The equation may

involve one or more integrals which are not evaluated, and the equation itself does

not have to be solved.

(b) (5 points) The integrals that should appear in your answer to part (a) can be eval-

uated numerically, and the whole equation you found in part (a) can be solved

numerically. Do this, and see how your z compares with 3.65.
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PROBLEM 5: MASS DENSITY OF VACUUM FLUCTUATIONS (25 points)

The energy density of vacuum fluctuations has been discussed qualitatively in lecture.
In this problem we will calculate in detail the energy density associated with quantum
fluctuations of the electromagnetic field. To keep the problem finite, we will not consider
all of space at once, but instead we will consider the electromagnetic field inside a cube
of side L, defined by coordinates

0 ≤ x ≤ L ,

0 ≤ y ≤ L ,

0 ≤ z ≤ L .

Our goal, however, will be to compute the energy density in the limit as the size of the
box is taken to infinity.

(a) (10 points) The electromagnetic waves inside the box can be decomposed into a
Fourier sum of sinusoidal normal modes. Suppose we consider only modes that
extend up to a maximum wave number kmax, or equivalently modes that extend
down to a minimum wavelength λmin, where

kmax =
2π

λmin
.

How many such modes are there? I do not expect an exact answer, but your approx-
imations should become arbitrarily accurate when λmin � L. (These mode counting
techniques are probably familiar to many of you, but in case they are not I have
attached an extended hint after part (c).)

(b) (10 points) When the electromagnetic field is described quantum mechanically, each
normal mode behaves exactly as a harmonic oscillator: if the angular frequency of
the mode is ω, then the quantized energy levels have energies given by

En =
(
n+ 1

2

)
h̄ω ,

where h̄ is Planck’s original constant divided by 2π, and n is an integer. The integer
n is called the “occupation number,” and is interpreted as the number of photons in
the specified mode. The minimum energy is not zero, but instead is 1

2 h̄ω, which is
the energy of the quantum fluctuations of the electromagnetic field. Assuming that
the mode sum is cut off at λmin equal to the Planck length (as defined in the Lecture
Notes), what is the total mass density of these quantum fluctuations?

(c) (5 points) How does the mass density of the quantum fluctuations of the electromag-
netic field compare with the critical density of our universe?

Extended Hint:
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The electromagnetic fields inside a closed box can be expanded as the sum of modes,
each of which has a sinusoidally varying time dependence, but the precise form of these
modes depends on the nature of the boundary conditions on the walls of the box. Phys-
ically reasonable boundary conditions, such as total reflection, are in fact difficult to use
in calculations. However, it is known that in the limit of an infinite-sized box, the na-
ture of the boundary conditions will not make any difference. We are therefore free to
choose the simplest boundary conditions that we can imagine, and for this purpose we
will choose periodic boundary conditions. That is, we will assume that the fields and
their normal derivatives on each wall are fixed to precisely match the fields and their
normal derivatives on the opposite wall.

To begin, we consider a wave in one dimension, moving at the speed of light. Such
waves are most easily described in terms of complex exponentials. If A(x, t) represents
the amplitude of the wave, then a sinusoidal wave moving in the positive x-direction can
be written as

A(x, t) = Re
[
Beik(x−ct)

]
,

where B is a complex constant and k is a real constant. Defining ω = c|k|, waves in
either direction can be written as

A(x, t) = Re
[
Bei(kx−ωt)

]
,

where the sign of k determines the direction. To be periodic with period L, the parameter
k must satisfy

kL = 2πn ,

where n is an integer. So the spacing between modes is ∆k = 2π/L. The density of
modes dN/dk (i.e., the number of modes per interval of k) is then one divided by the
spacing, or 1/∆k, so

dN

dk
=

L

2π
(one dimension) .

In three dimensions, a sinusoidal wave can be written as

A(~x, t) = Re
[
Bei(

~k·~x−ωt)
]
,

where ω = c|~k|, and

kxL = 2πnx , kyL = 2πny , kzL = 2πnz ,

where nx, ny, and nz are integers. Thus, in three-dimensional ~k-space the allowed values

of ~k lie on a cubical lattice, with spacing 2π/L. In counting the modes, one should also
remember that for photons there is an extra factor of 2 associated with the fact that
electromagnetic waves have two possible polarizations for each allowed value of ~k.
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PROBLEM 6: PLOTTING THE SUPERNOVA DATA (EXTRA CREDIT, 20
pts)

The original data on the Hubble diagram based on Type Ia supernovae are found in
two papers. One paper is authored by the High Z Supernova Search Team,* and the other
is by the Supernova Cosmology Project.† More recent data from the High Z team, which
includes many more data points, can be found in Riess et al., http://arXiv.org/abs/astro-
ph/0402512.¶ (By the way, the lead author Adam Riess was an MIT undergraduate
physics major, graduating in 1992.)

You are asked to plot the data from either the 2nd or 3rd of these papers, and to
include on the graph the theoretical predictions for several cosmological models.

The plot will be similar to the plots contained in these papers, and to the plot on
p. 121 of Ryden’s book, showing a graph of (corrected) magnitude m vs. redshift z. Your
graph should include the error bars. If you plot the Perlmutter et al. data, you will be
plotting “effective magnitude” m vs. redshift z. The magnitude is related to the flux
J of the observed radiation by m = − 5

2 log10(J) + const. The value of the constant
in this expression will not be needed. The word “corrected” refers both to corrections
related to the spectral sensitivity of the detectors and to the brightness of the supernova
explosions themselves. That is, the supernova at various distances are observed with
different redshifts, and hence one must apply corrections if the detectors used to measure
the radiation do not have the same sensitivity at all wavelengths. In addition, to improve
the uniformity of the supernova as standard candles, the astronomers apply a correction
based on the duration of the light output. Note that our ignorance of the absolute
brightness of the supernova, of the precise value of the Hubble constant, and of the
constant that appears in the definition of magnitude all combine to give an unknown but
constant contribution to the predicted magnitudes. The consequence is that you will be
able to move your predicted curves up or down (i.e., translate them by a fixed distance
along the m axis). You should choose the vertical positioning of your curve to optimize
your fit, either by eyeball or by some more systematic method.

If you choose to plot the data from the 3rd paper, Riess et al. 2004, then you should
see the note at the end of this problem.

For your convenience, the magnitudes and redshifts for the Supernova Cosmology
Project paper, from Tables 1 and 2, are summarized in a text file on the 8.286 web page.
The data from Table 5 of the Riess et al. 2004 paper, mentioned above, is also posted on
the 8.286 web page.

* http://arXiv.org/abs/astro-ph/9805201, later published as Riess et al., Astronomical
Journal 116, 1009 (1998).
† http://arXiv.org/abs/astro-ph/9812133, later published as Perlmutter et al., Astro-

physical Journal 517:565–586 (1999).
¶ Published as Astrophysical Journal 607:665-687 (2004).
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For the cosmological models to plot, you should include:

(i) A matter-dominated universe with Ωm = 1.

(ii) An open universe, with Ωm,0 = 0.3.

(iii) A universe with Ωm,0 = 0.3 and a cosmological constant, with Ωvac,0 = 0.7. (If you
prefer to avoid the flat case, you can use Ωvac,0 = 0.6. Or, if you want to compare
directly with Figure 4 of the Riess et al. (2004) paper, you should use Ωm,0 = 0.29,
Ωvac,0 = 0.71.)

You may include any other models if they interest you. You can draw the plot with either
a linear or a logarithmic scale in z. I would recommend extending your theoretical plot
to z = 3, if you do it logarithmically, or z = 2 if you do it linearly, even though the data
does not go out that far. That way you can see what possible knowledge can be gained
by data at higher redshift.

NOTE FOR THOSE PLOTTING DATA FROM RIESS ET AL. 2004:

Unlike the Perlmutter et al. data, the Riess et al. data is expressed in terms of the
distance modulus, which is a direct measure of the luminosity distance. The distance
modulus is defined both in the Riess et al. paper and in Ryden’s book (p. 120) as

µ = 5 log10

(
dL

1 Mpc

)
+ 25 ,

where Ryden uses the notation m−M for the distance modulus, and dL is the luminosity
distance. The luminosity distance, in turn, is really a measure of the observed brightness
of the object. It is defined as the distance that the object would have to be located to
result in the observed brightness, if we were living in a static Euclidean universe. More
explicitly, if we lived in a static Euclidean universe and an object radiated power P in a
spherically symmetric pattern, then the energy flux J at a distance d would be

J =
P

4πd2
.

That is, the power would be distributed uniformly over the surface of a sphere at radius
d. The luminosity distance is therefore defined as

dL =

√
P

4πJ
.

Thus, a specified value of the distance modulus µ implies a definite value of the ratio
J/P .

In plotting a theoretical curve, you will need to choose a value for H0. Riess et al. do
not specify what value they used, but I found that their curve is most closely reproduced
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if I choose H0 = 66 km-sec−1-Mpc−1. This seems a little on the low side, since the value
is usually estimated as 70–72 km-sec−1-Mpc−1, but Riess et al. emphasize that they
were not concerned with this value. They were concerned with the relative values of the
distance moduli, and hence the shape of the graph of the distance modulus vs. z. In their
own words, from Appendix A, “The zeropoint, distance scale, absolute magnitude of the
fiducial SN Ia or Hubble constant derived from Table 5 are all closely related (or even
equivalent) quantities which were arbitrarily set for the sample presented here. Their
correct value is not relevant for the analyses presented which only make use of differences
between SN Ia magnitudes. Thus the analysis are independent of the aforementioned
normalization parameters.”

Total points for Problem Set 8: 110, plus an optional 20 points of extra credit.
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PROBLEM 1: THE HORIZON PROBLEM (20 points)

The success of the big bang predictions for the abundances of the light elements

suggests that the universe was already in thermal equilibrium at one second after the big

bang. At this time, the region that later evolves to become the observed universe was,

in the context of the conventional (non-inflationary) cosmological model, many horizon

distances across. Try to estimate how many. You may assume that the universe is flat,

that it was radiation-dominated for t <∼ 50,000 yr, and for this crude estimate you can

also assume that it has been matter-dominated for all t >∼ 50,000 yr, and that a(t)T (t) ≈
const for the whole period from 1 second to the present.

PROBLEM 2: THE FLATNESS PROBLEM (20 points)

Although we now know that Ω0 = 1 to an accuracy of about half a percent, let us

pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second

after the big bang (about the time of the grand unified theory phase transition), Ω must

have been extraordinarily close to one. Writing Ω = 1 − δ , estimate the value of δ at

t = 10−37 sec (using the standard cosmological model). You may again use any of the

approximations mentioned in Problem 1.
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PROBLEM 3: THE MAGNETIC MONOPOLE PROBLEM (20 points)

In Lecture Notes 9, we learned that Grand Unified Theories (GUTs) imply the
existence of magnetic monopoles, which form as “topological defects” (topologically sta-
ble knots) in the configuration of the Higgs fields that are responsible for breaking the
grand unified symmetry to the SU(3)×SU(2)×U(1) symmetry of the standard model
of particle physics. It was stated that if grand unified theories and the conventional
(non-inflationary) cosmological model were both correct, then far too many magnetic
monopoles would have been produced in the big bang. In this problem we will fill in the
mathematical steps of that argument.

At very high temperatures the Higgs fields oscillate wildly, so the fields average to
zero. As the temperature T falls, however, the system undergoes a phase transition.
The phase transition occurs at a temperature Tc, called the critical temperature, where
kTc ≈ 1016 GeV. At this phase transition the Higgs fields acquire nonzero expectation
values, and the grand unified symmetry is thereby spontaneously broken. The monopoles
are twists in the Higgs field expectation values, so the monopoles form at the phase
transition. Each monopole is expected to have a mass MMc

2 ≈ 1018 GeV, where the
subscript “M” stands for “monopole.” According to an estimate first proposed by T.W.B.
Kibble, the number density nM of monopoles formed at the phase transition is of order

nM ∼ 1/ξ3 , (3.1)

where ξ is the correlation length of the field, defined roughly as the maximum distance
over which the field at one point in space is correlated with the field at another point in
space. The correlation length is certainly no larger than the physical horizon distance
at the time of the phase transition, and it is believed to typically be comparable to this
upper limit. Note that an upper limit on ξ is a lower limit on nM — there must be at
least of order one monopole per horizon-sized volume.

Assume that the particles of the grand unified theory form a thermal gas of blackbody
radiation, as described by Eq. (6.48) of Lecture Notes 6,

u = g
π2

30

(kT )4

(h̄c)3
, (3.2)

with gGUT ∼ 200. Further assume that the universe is flat and radiation-dominated from
its beginning to the time of the GUT phase transition, tGUT.

For each of the following questions, first write the answer in terms of physical con-
stants and the parameters Tc, MM , and gGUT, and then evaluate the answers numerically.

(a) (5 points) Under the assumptions described above, at what time tGUT does the phase
transition occur? Express your answer first in terms of symbols, and then evaluate
it in seconds.
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(b) (5 points) Using Eq. (3.1) and setting ξ equal to the horizon distance, estimate the
number density nM of magnetic monopoles just after the phase transition.

(c) (5 points) Calculate the ratio nM/nγ of the number of monopoles to the number of
photons immediately after the phase transition. Refer to Lecture Notes 6 to remind
yourself about the number density of photons. You may assume that the temperature
after the phase transition is still approximately Tc.

(d) (5 points) For topological reasons monopoles cannot disappear, but they form with an
equal number of monopoles and antimonopoles, where the antimonopoles correspond
to twists in the Higgs field in the opposite sense. Monopoles and antimonopoles can
annihilate each other, but estimates of the rate for this process show that it is
negligible. Thus, in the context of the conventional (non-inflationary) hot big bang
model, the ratio of monopoles to photons would be about the same today as it was
just after the phase transition. Use this assumption to estimate the contribution
that these monopoles would make to the value of Ω today.

PROBLEM 4: EXPONENTIAL EXPANSION OF THE INFLATIONARY
UNIVERSE (15 points)

Recall that the evolution of a Robertson-Walker universe is described by the equation(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
. (4.1)

Suppose that the mass density ρ is given by the constant mass density ρf of the false
vacuum. For the case k = 0, the growing solution is given simply by

a(t) = const eχt, (4.2)

where

χ =

√
8π

3
Gρf (4.3)

and const is an arbitrary constant. Find the growing solution to this equation for an
arbitrary value of k. Be sure to consider both possibilities for the sign of k. You may
find the following integrals useful:∫

dx√
1 + x2

= sinh−1 x . (4.4a)∫
dx√

1− x2
= sin−1 x . (4.4b)∫

dx√
x2 − 1

= cosh−1 x . (4.4c)

Show that for large times one has
a(t) ∝ eχt (4.5)

for all choices of k.
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PROBLEM 5: THE HORIZON DISTANCE FOR THE PRESENT UNI-
VERSE (25 points)

We have not discussed horizon distances since the beginning of Lecture Notes 4,
when we found that

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (5.1)

This formula was derived before we discussed curved spacetimes, but the formula is valid
for any Robertson-Walker universe, whether it is open, closed, or flat.

(a) Show that the formula above is valid for closed universes. Hint: write the closed
universe metric as it was written in Eq. (7.27):

ds2 = −c2 dt2 + ã2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
, (5.2)

where

ã(t) ≡ a(t)√
k

(5.3)

and ψ is related to the usual Robertson-Walker coordinate r by

sinψ ≡
√
k r . (5.4)

Use the fact that the physical speed of light is c, or equivalently the fact that ds2 = 0
for any segment of the light ray’s trajectory.

(b) The evaluation of the formula depends of course on the form of the function a(t),
which is governed by the Friedmann equations. For the Planck 2018 best fit to the
parameters (see Table 7.1 of Lecture Notes 7, and Eq. (6.23) of Lecture Notes 6),

H0 = 67.7 km · s−1 ·Mpc−1 (5.5a)

Ωm,0 = 0.311 (5.5b)

Ωr,0 = 4.15× 10−5h−20 (Tγ,0 = 2.725 K)

= 9.05× 10−5 (5.5c)

Ωvac,0 = 1− Ωm,0 − Ωr,0 , (5.5d)

find the current horizon distance, expressed both in light-years and in Mpc. Hint:
find an integral expression for the horizon distance, similar to Eq. (7.23a) for the age
of the universe. Then do the integral numerically.

Note that the model for which you are calculating does not explicitly include inflation.
If it did, the horizon distance would turn out to be vastly larger. By ignoring the
inflationary era in calculating the integral of Eq. (5.1), we are finding an effective
horizon distance, defined as the present distance of the most distant objects that
we can in principle observe by using only photons that have left their sources after
the end of inflation. Photons that left their sources earlier than the end of inflation
have undergone incredibly large redshifts, so it is reasonable to consider them to be
completely unobservable in practice.
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PROBLEM 6: A ZERO MASS DENSITY UNIVERSE— GENERAL REL-
ATIVITY DESCRIPTION

(This problem is not required, but can be done for 20 points extra credit.)

In this problem and the next we will explore the connections between special rela-
tivity and the standard cosmological model which we have been discussing. Although we
have not studied general relativity in detail, the description of the cosmological model
that we have been using is precisely that of general relativity. In the limit of zero mass
density the effects of gravity will become negligible, and the formulas must then be com-
patible with the special relativity which we discussed at the beginning of the course. The
goal of these two problems is to see exactly how this happens.

These two problems will emphasize the notion that a coordinate system is nothing
more than an arbitrary system of designating points in spacetime. A physical object
might therefore look very different in two different coordinate systems, but the answer to
any well-defined physical question must turn out the same regardless of which coordinate
system is used in the calculation.

From the general relativity point of view, the model universe is described by the
Robertson-Walker spacetime metric:

ds2 = −c2dt2 + a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)}
. (6.1)

This formula describes the analogue of the “invariant interval” of special relativity, mea-
sured between the spacetime points (t, r, θ, φ) and (t+ dt, r + dr, θ + dθ, φ+ dφ).

The evolution of the model universe is governed by the general relation(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (6.2)

except in this case the mass density term is to be set equal to zero.

(a) (5 points) Since the mass density is zero, it is certainly less than the critical mass
density, so the universe is open. We can then choose k = −1. Derive an explicit
expression for the scale factor a(t).

(b) (5 points) Suppose that a light pulse is emitted by a comoving source at time te, and
is received by a comoving observer at time to. Find the Doppler shift ratio z.

(c) (5 points) Consider a light pulse that leaves the origin at time te. In an infinitesimal
time interval dt the pulse will travel a physical distance ds = cdt. Since the pulse is
traveling in the radial direction (i.e., with dθ = dφ = 0), one has

cdt = a(t)
dr√

1− kr2
. (6.3)
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Note that this is a slight generalization of Eq. (2.9), which applies for the case of
a Euclidean geometry (k = 0). Derive a formula for the trajectory r(t) of the light
pulse. You may find the following integral useful:∫

dr√
1 + r2

= sinh−1 r . (6.4)

(d) (5 points) Use these results to express the redshift z in terms of the coordinate r of
the observer. If you have done it right, your answer will be independent of te. (In
the special relativity description that will follow, it will be obvious why the redshift
must be independent of te. Can you see the reason now?)

PROBLEM 7: A ZERO MASS DENSITY UNIVERSE— SPECIAL RELA-
TIVITY DESCRIPTION

(This problem is also not required, but can be done for 20 points extra credit.)

In this problem we will describe the same model universe as in the previous problem,
but we will use the standard formulation of special relativity. We will therefore use an
inertial coordinate system, rather than the comoving system of the previous problem.
Please note, however, that in the usual case in which gravity is significant, there is no
inertial coordinate system. Only when gravity is absent does such a coordinate system
exist.

To distinguish the two systems, we will use primes to denote the inertial coordinates:
(t′, x′, y′, z′). Since the problem is spherically symmetric, we will also introduce “polar
inertial coordinates” (r′, θ′, φ′) which are related to the Cartesian inertial coordinates by
the usual relations:

x′ = r′ sin θ′ cosφ′

y′ = r′ sin θ′ sinφ′

z′ = r′ cos θ′ .

(7.1)

In terms of these polar inertial coordinates, the invariant spacetime interval of special
relativity can be written as

ds2 = −c2dt′2 + dr′2 + r′2
(
dθ′2 + sin2 θ′dφ′2

)
. (7.2)

For purposes of discussion we will introduce a set of comoving observers which travel
along with the matter in the universe, following the Hubble expansion pattern. (Although
the matter has a negligible mass density, I will assume that enough of it exists to define
a velocity at any point in space.) These trajectories must all meet at some spacetime
point corresponding to the instant of the big bang, and we will take that spacetime point
to be the origin of the coordinate system. Since there are no forces acting in this model
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universe, the comoving observers travel on lines of constant velocity (all emanating from
the origin). The model universe is then confined to the future light-cone of the origin.

(a) (5 points) The cosmic time variable t used in the previous problem can be defined as
the time measured on the clocks of the comoving observers, starting at the instant
of the big bang. Using this definition and your knowledge of special relativity, find
the value of the cosmic time t for given values of the inertial coordinates— i.e., find
t(t′, r′). [Hint: first find the velocity of a comoving observer who starts at the origin
and reaches the spacetime point (t′, r′, θ′, φ′). Note that the rotational symmetry
makes θ′ and φ′ irrelevant, so one can examine motion along a single axis.]

(b) (5 points) Let us assume that angular coordinates have the same meaning in the two
coordinate systems, so that θ = θ′ and φ = φ′. We will verify in part (d) below that
this assumption is correct. Using this assumption, find the value of the comoving
radial coordinate r in terms of the inertial coordinates— i.e., find r(t′, r′). [Hint:
consider an infinitesimal line segment which extends in the θ-direction, with constant
values of t, r, and φ. Use the fact that this line segment must have the same physical
length, regardless of which coordinate system is used to describe it.] Draw a graph
of the t′-r′ plane, and sketch in lines of constant t and lines of constant r.

(c) (5 points) Show that the radial coordinate r of the comoving system is related to the
magnitude of the velocity in the inertial system by

r =
v/c√

1− v2/c2
. (7.3)

Suppose that a light pulse is emitted at the spatial origin (r′ = 0, t′ = anything)
and is received by another comoving observer who is traveling at speed v. With
what redshift z is the pulse received? Express z as a function of r, and compare your
answer to part (d) of the previous problem.

(d) (5 points) In this part we will show that the metric of the comoving coordinate
system can be derived from the metric of special relativity, a fact which completely
establishes the consistency of the two descriptions. To do this, first write out the
equations of transformation in the form:

t′ =?

r′ =?

θ′ =?

φ′ =? ,

(7.4)

where the question marks denote expressions in t, r, θ, and φ. Now consider an
infinitesimal spacetime line segment described in the comoving system by its two
endpoints: (t, r, θ, φ) and (t+ dt, r+ dr, θ+ dθ, φ+ dφ). Calculating to first order in
the infinitesimal quantities, find the separation between the coordinates of the two
endpoints in the inertial coordinate system— i.e., find dt′, dr′, dθ′, and dφ′. Now
insert these expressions into the special relativity expression for the invariant interval
ds2 , and if you have made no mistakes you will recover the Robertson-Walker metric
used in the previous problem.



8.286 PROBLEM SET 9, FALL 2018 p. 8

DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE:

The two problems above demonstrate how the general relativistic description of
cosmology can reduce to special relativity when gravity is unimportant, but it provides
a misleading picture of the big-bang singularity which I would like to clear up.

First, let me point out that the mass density of the universe increases as one looks
backward in time. So, if we imagine a model universe with Ω = 0.01 at a given time, it
could be well-approximated by the zero mass density universe at this time. However, no
matter how small Ω is at a given time, the mass density will increase as one follows the
model to earlier times, and the behavior of the model near t = 0 will be very different
from the zero mass density model.

In the zero mass density model, the big-bang “singularity” is a single spacetime
point which is in fact not singular at all. In the comoving description the scale factor a(t)
equals zero at this time, but in the inertial system one sees that the spacetime metric
is really just the usual smooth metric of special relativity, expressed in a peculiar set
of coordinates. In this model it is unnatural to think of t = 0 as really defining the
beginning of anything, since the the future light-cone of the origin connects smoothly to
the rest of the spacetime.

In the standard model of the universe with a nonzero mass density, the behavior of
the singularity is very different. First of all, it really is singular— one can mathematically
prove that there is no coordinate system in which the singularity disappears. Thus, the
spacetime cannot be joined smoothly onto anything that may have happened earlier.

The differences between the singularities in the two models can also be seen by
looking at the horizon distance. We learned in Lecture Notes 4 that light can travel only
a finite distance from the time of the big bang to some arbitrary time t, and that this
“horizon distance” is given by

`p(t) = a(t)

∫ t

0

c

a(t′)
dt′ . (7.5)

For the scale factor of the zero mass density universe as found in the problem, one can
see that this distance is infinite for any t— for the zero mass density model there is no
horizon. For a radiation-dominated model, however, there is a finite horizon distance
given by 2ct.

Finally, in the zero mass density model the big bang occurs at a single point in
spacetime, but for a nonzero mass density model it seems better to think of the big
bang as occurring everywhere at once. In terms of the Robertson-Walker coordinates,
the singularity occurs at t = 0, for all values of r, θ, and φ. There is a subtle issue,
however, because with a(t = 0) = 0, all of these points have zero distance from each
other. Mathematically the locus t = 0 in a nonzero mass density model is too singular
to even be considered part of the space, which consists of all values of t > 0. Thus, the
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question of whether the singularity is a single point is not well defined. For any t > 0 the
issue is of course clear— the space is homogeneous and infinite (for the case of the open
universe). If one wishes to ignore the mathematical subtleties and call the singularity
at t = 0 a single point, then one certainly must remember that the singularity makes
it a very unusual point. Objects emanating from this “point” can achieve an infinite
separation in an arbitrarily short length of time.

Total points for Problem Set 9: 100, plus an optional 40 points of extra credit.
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QUIZ COVERAGE: Lecture Notes 1, 2, and 3; Problem Sets 1, 2, and 3; Weinberg,
Chapters 1, 2, and 3; Ryden, Chapters 1, 2, and 3. (While all of Ryden’s Chapter 3
has been assigned, questions on the quiz will be limited to Section 3.1. The material
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understand the cosmological Doppler shift, also discussed in Lecture Notes 2, but
there will be no questions specifically focused on Ryden’s discussion.) One of the
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from this set of Review Problems. The starred problems are the ones that I
recommend that you review most carefully: Problems 2, 4, 7, 12, 15, 17, 19, and 22.
The starred problems do not include any reading questions, but parts of the reading
questions in these Review Problems may also recur on the upcoming quiz. For the
homework problems, extra credit problems are eligible to be the problem used on
the quiz.

PURPOSE: These review problems are not to be handed in, but are being made avail-
able to help you study. They come mainly from quizzes in previous years. Except
for a few parts which are clearly marked, they are all problems that I would consider
fair for the coming quiz. In some cases the number of points assigned to the problem
on the quiz is listed — in all such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the
actual quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2005, 2007,
2009, 2011, 2013, and 2016. The relevant problems from those quizzes have mostly
been incorporated into these review problems, but you still may be interested in
looking at the original quizzes, just to see how much material has been included in
each quiz. Since the schedule and the number of quizzes has varied over the years,
the coverage of this quiz will not necessarily be the same as Quiz 1 from all previous
years. In fact, however, the first quiz this year covers essentially the same material
as the first quiz in either 2009, 2011, 2013, or 2016.

REVIEW SESSION: To help you study for the quiz, there will be a review session led
by Honggeun Kim on Sunday, September 30, at 3:30 pm in Room 3-333.

FUTURE QUIZZES: The other quiz dates this term will be Monday, November 5,
and Wednesday, December 5, 2018.
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INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” at the back of
the quiz. For the first quiz, this useful information will be the following:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1
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Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects, a(t)
is the scale factor, and `c is the coordinate distance between the
objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight lines

with speed
dx

dt
=

c

a(t)
.

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
Gρa ,

ρ(t) =
a3(ti)

a3(t)
ρ(ti)

Ω ≡ ρ/ρc , where ρc =
3H2

8πG
.

Flat (k = 0): a(t) ∝ t2/3 , Ω = 1
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PROBLEM 1: DID YOU DO THE READING (2000)? (35 points)

The following problem was Problem 1, Quiz 1, 2000. The parts were each worth 5 points.

a) The Doppler effect for both sound and light waves is named for Johann Christian
Doppler, a professor of mathematics at the Realschule in Prague. He predicted the
effect for both types of waves in xx42. What are the two digits xx?

b) When the sky is very clear (as it almost never is in Boston), one can see a band
of light across the night sky that has been known since ancient times as the Milky
Way. Explain in a sentence or two how this band of light is related to the shape of
the galaxy in which we live, which is also called the Milky Way.

c) The statement that the distant galaxies are on average receding from us with a speed
proportional to their distance was first published by Edwin Hubble in 1929, and has
become known as Hubble’s law. Was Hubble’s original paper based on the study of
2, 18, 180, or 1,800 galaxies?

d) The following diagram, labeled Homogeneity and the Hubble Law, was used by Wein-
berg to explain how Hubble’s law is consistent with the homogeneity of the universe:

The arrows and labels from the “Velocities seen by B” and the “Velocities seen by
C” rows have been deleted from this copy of the figure, and it is your job to sketch
the figure in your exam book with these arrows and labels included. (Actually, in
Weinberg’s diagram these arrows were not labeled, but the labels are required here
so that the grader does not have to judge the precise length of hand-drawn arrows.)

e) The horizon is the present distance of the most distant objects from which light has
had time to reach us since the beginning of the universe. The horizon changes with
time, but of course so does the size of the universe as a whole. During a time interval
in which the linear size of the universe grows by 1%, does the horizon distance

(i) grow by more than 1%, or

(ii) grow by less than 1%, or

(iii) grow by the same 1%?

f) Name the two men who in 1964 discovered the cosmic background radiation. With
what institution were they affiliated?
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g) At a temperature of 3000 K, the nuclei and electrons that filled the universe com-

bined to form neutral atoms, which interact very weakly with the photons of the

background radiation. After this process, known as “recombination,” the background

radiation expanded freely. Since recombination, how have each of the following quan-

tities varied as the size of the universe has changed? (Your answers should resemble

statements such as “proportional to the size of the universe,” or “inversely propor-

tional to the square of the size of the universe”. The word “size” will be interpreted

to mean linear size, not volume.)

(i) the average distance between photons

(ii) the typical wavelength of the radiation

(iii) the number density of photons in the radiation

(iv) the energy density of the radiation

(v) the temperature of the radiation

∗PROBLEM 2: THE STEADY-STATE UNIVERSE THEORY (25 points)

The following problem was Problem 2, Quiz 1, 2000.

The steady-state theory of the universe was proposed in the late 1940s by Hermann

Bondi, Thomas Gold, and Fred Hoyle, and was considered a viable model for the universe

until the cosmic background radiation was discovered and its properties were confirmed.

As the name suggests, this theory is based on the hypothesis that the large-scale properties

of the universe do not change with time. The expansion of the universe was an established

fact when the steady-state theory was invented, but the steady-state theory reconciles the

expansion with a steady-state density of matter by proposing that new matter is created

as the universe expands, so that the matter density does not fall. Like the conventional

theory, the steady-state theory describes a homogeneous, isotropic, expanding universe,

so the same comoving coordinate formulation can be used.

a) (10 points) The steady-state theory proposes that the Hubble constant, like other

cosmological parameters, does not change with time, so H(t) = H0. Find the most

general form for the scale factor function a(t) which is consistent with this hypothesis.

b) (15 points) Suppose that the mass density of the universe is ρ0, which of course does

not change with time. In terms of the general form for a(t) that you found in part

(a), calculate the rate at which new matter must be created for ρ0 to remain constant

as the universe expands. Your answer should have the units of mass per unit volume

per unit time. [If you failed to answer part (a), you will still receive full credit here

if you correctly answer the question for an arbitrary scale factor function a(t).]
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PROBLEM 3: DID YOU DO THE READING (2007)? (25 points)

The following problem was Problem 1 on Quiz 1, 2007, where each of the 5 questions was
worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of cosmology,
in which the universe has always looked about the same as it does now. State the
last name of at least one of these authors. (Bonus points: you can earn 1 point each
for naming the other two authors, and hence up to 2 additional points, but 1 point
will be taken off for each incorrect answer.)

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the following
accomplishments:

(i) measured the size of the Milky Way galaxy, finding it to be about one billion
light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained persua-
sive evidence that Andromeda is not within our own galaxy, but is apparently
another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that as-
tronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which appeared
to be static but which produced a redshift proportional to the distance.

(v) discovered that the orbital periods of the planets are proportional to the 3/2
power of the semi-major axis of their elliptical orbits.

(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of microwave
radiation coming from all directions in the sky, which was interpreted by a group of
physicists at a neighboring institution as the cosmic background radiation left over
from the big bang. Circle the two items on the following list that were not part of
the story behind this spectacular discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University
(iv) pigeons (v) ground hogs (vi) Hubble’s constant
(vii) liquid helium (viii) 7.35 cm

(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each incorrect
answer, but the minimum score is zero.)

(d) Important predictions of the Copernican theory were confirmed by the discovery
of the aberration of starlight (which showed that the velocity of the Earth has the
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time-dependence expected for rotation about the Sun) and by the behavior of the
Foucault pendulum (which showed that the Earth rotates). These discoveries were
made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respectively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respectively.

(e) If one averages over sufficiently large scales, the universe appears to be homogeneous
and isotropic. How large must the averaging scale be before this homogeneity and
isotropy set in?

(i) 1 AU (1 AU = 1.496× 1011 m).

(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

∗PROBLEM 4: AN EXPONENTIALLY EXPANDING UNIVERSE (20
points)

The following problem was Problem 2, Quiz 2, 1994, and had also appeared on the 1994
Review Problems. As is the case this year, it was announced that one of the problems
on the quiz would come from either the homework or the Review Problems. The problem
also appeared as Problem 2 on Quiz 1, 2007.

Consider a flat (i.e., a k = 0, or a Euclidean) universe with scale factor given by

a(t) = a0e
χt ,

where a0 and χ are constants.

(a) (5 points) Find the Hubble constant H at an arbitrary time t.

(b) (5 points) Let (x, y, z, t) be the coordinates of a comoving coordinate system. Sup-
pose that at t = 0 a galaxy located at the origin of this system emits a light pulse
along the positive x-axis. Find the trajectory x(t) which the light pulse follows.

(c) (5 points) Suppose that we are living on a galaxy along the positive x-axis, and that
we receive this light pulse at some later time. We analyze the spectrum of the pulse
and determine the redshift z. Express the time tr at which we receive the pulse in
terms of z, χ, and any relevant physical constants.

(d) (5 points) At the time of reception, what is the physical distance between our galaxy
and the galaxy which emitted the pulse? Express your answer in terms of z, χ, and
any relevant physical constants.
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PROBLEM 5: DID YOU DO THE READING (1986/1990 COMPOSITE)?

(a) The assumptions of homogeneity and isotropy greatly simplify the description of our
universe. We find that there are three possibilities for a homogeneous and isotropic
universe: an open universe, a flat universe, and a closed universe. What quantity or
condition distinguishes between these three cases: the temperature of the microwave
background, the value of Ω = ρ/ρc, matter vs. radiation domination, or redshift?

(b) What is the temperature, in Kelvin, of the cosmic microwave background today?

(c) Which of the following supports the hypothesis that the universe is isotropic: the
distances to nearby clusters, observations of the cosmic microwave background, clus-
tering of galaxies on large scales, or the age and distribution of globular clusters?

(d) Is the distance to the Andromeda Nebula (roughly) 10 kpc, 5 billion light years, 2
million light years, or 3 light years?

(e) Did Hubble discover the law which bears his name in 1862, 1880, 1906, 1929, or
1948?

(f) When Hubble measured the value of his constant, he found H−1 ≈ 100 million years,
2 billion years, 10 billion years, or 20 billion years?

(g) Cepheid variables are important to cosmology because they can be used to estimate
the distances to the nearby galaxies. What property of Cepheid variables makes
them useful for this purpose, and how are they used?

(h) Cepheid variable stars can be used as estimators of distance for distances up to
about 100 light-years, 104 light-years, 107 light years, or 1010 light-years? [Note for
2011: this question was based on the reading from Joseph Silk’s The Big Bang,
and therefore would be not be a fair question for this year.]

(i) Name the two men who in 1964 discovered the cosmic background radiation. With
what institution were they affiliated?

(j) At the time of the discovery of the cosmic microwave background, an active but
independent effort was taking place elsewhere. P.J.E. Peebles had estimated that
the universe must contain background radiation with a temperature of at least 10◦K,
and Robert H. Dicke, P.G. Roll, and D.T. Wilkinson had mounted an experiment to
look for it. At what institution were these people working?

PROBLEM 6: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLUTION

The following problem was Problem 3, Quiz 2, 1988:

Consider a flat universe filled with a new and peculiar form of matter, with a
Robertson–Walker scale factor that behaves as

a(t) = bt1/3 .
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Here b denotes a constant.

(a) If a light pulse is emitted at time te and observed at time to, find the physical
separation `p(to) between the emitter and the observer, at the time of observation.

(b) Again assuming that te and to are given, find the observed redshift z.

(c) Find the physical distance `p(to) which separates the emitter and observer at the
time of observation, expressed in terms of c, to, and z (i.e., without te appearing).

(d) At an arbitrary time t in the interval te < t < to, find the physical distance `p(t)
between the light pulse and the observer. Express your answer in terms of c, t, and
to.

∗PROBLEM 7: ANOTHER FLAT UNIVERSE WITH AN UNUSUAL
TIME EVOLUTION (40 points)

The following problem was Problem 3, Quiz 1, 2000.

Consider a flat universe which is filled with some peculiar form of matter, so that
the Robertson–Walker scale factor behaves as

a(t) = btγ ,

where b and γ are constants. [This universe differs from the matter-dominated universe
described in the lecture notes in that ρ is not proportional to 1/a3(t). Such behavior is
possible when pressures are large, because a gas expanding under pressure can lose energy
(and hence mass) during the expansion.] For the following questions, any of the answers
may depend on γ, whether it is mentioned explicitly or not.

a) (5 points) Let t0 denote the present time, and let te denote the time at which the
light that we are currently receiving was emitted by a distant object. In terms of
these quantities, find the value of the redshift parameter z with which the light is
received.

b) (5 points) Find the “look-back” time as a function of z and t0. The look-back time
is defined as the length of the interval in cosmic time between the emission and
observation of the light.

c) (10 points) Express the present value of the physical distance to the object as a
function of H0, z, and γ.

d) (10 points) At the time of emission, the distant object had a power output P (mea-
sured, say, in ergs/sec) which was radiated uniformly in all directions, in the form
of photons. What is the radiation energy flux J from this object at the earth to-
day? Express your answer in terms of P , H0, z, and γ. [Energy flux (which might
be measured in erg-cm−2-sec−1) is defined as the energy per unit area per unit time
striking a surface that is orthogonal to the direction of energy flow.]
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e) (10 points) Suppose that the distant object is a galaxy, moving with the Hubble
expansion. Within the galaxy a supernova explosion has hurled a jet of material
directly towards Earth with a speed v, measured relative to the galaxy, which is
comparable to the speed of light c. Assume, however, that the distance the jet has
traveled from the galaxy is so small that it can be neglected. With what redshift zJ
would we observe the light coming from this jet? Express your answer in terms of
all or some of the variables v, z (the redshift of the galaxy), t0, H0, and γ, and the
constant c.

PROBLEM 8: DID YOU DO THE READING (1996)? (25 points)

The following problem was Problem 1, Quiz 1, 1996:

The following questions are worth 5 points each.

a) In 1814-1815, the Munich optician Joseph Frauenhofer allowed light from the sun
to pass through a slit and then through a glass prism. The light was spread into a
spectrum of colors, showing lines that could be identified with known elements —
sodium, iron, magnesium, calcium, and chromium. Were these lines dark, or bright
(2 points)? Why (3 points)?

b) The Andromeda Nebula was shown conclusively to lie outside our own galaxy when
astronomers acquired telescopes powerful enough to resolve the individual stars of
Andromeda. Was this feat accomplished by Galileo in 1609, by Immanuel Kant in
1755, by Henrietta Swan Leavitt in 1912, by Edwin Hubble in 1923, or by Walter
Baade and Allan Sandage in the 1950s?

c) Some of the earliest measurements of the cosmic background radiation were made
indirectly, by observing interstellar clouds of a molecule called cyanogen (CN). State
whether each of the following statements is true or false (1 point each):

(i) The first measurements of the temperature of the interstellar cyanogen were
made over twenty years before the cosmic background radiation was directly
observed.

(ii) Cyanogen helps to measure the cosmic background radiation by reflecting it
toward the earth, so that it can be received with microwave detectors.

(iii) One reason why the cyanogen observations were important was that they gave
the first measurements of the equivalent temperature of the cosmic background
radiation at wavelengths shorter than the peak of the black-body spectrum.

(iv) By measuring the spectrum of visible starlight that passes through the cyanogen
clouds, astronomers can infer the intensity of the microwave radiation that
bathes the clouds.

(v) By observing chemical reactions in the cyanogen clouds, astronomers can infer
the temperature of the microwave radiation in which they are bathed.
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d) In about 280 B.C., a Greek philosopher proposed that the Earth and the other
planets revolve around the sun. What was the name of this person? [Note for 2011:
this question was based on readings from Joseph Silk’s The Big Bang, and therefore
is not appropriate for Quiz 1 of this year.]

e) In 1832 Heinrich Wilhelm Olbers presented what we now know as “Olbers’ Paradox,”
although a similar argument had been discussed as early as 1610 by Johannes Kepler.
Olbers argued that if the universe were transparent, static, infinitely old, and was
populated by a uniform density of stars similar to our sun, then one of the following
consequences would result:

(i) The brightness of the night sky would be infinite.

(ii) Any patch of the night sky would look as bright as the surface of the sun.

(iii) The total energy flux from the night sky would be about equal to the total
energy flux from the sun.

(iv) Any patch of the night sky would look as bright as the surface of the moon.

Which one of these statements is the correct statement of Olbers’ paradox?

PROBLEM 9: A FLAT UNIVERSE WITH a(t) ∝ t3/5

The following problem was Problem 3, Quiz 1, 1996:

Consider a flat universe which is filled with some peculiar form of matter, so that
the Robertson–Walker scale factor behaves as

a(t) = bt3/5 ,

where b is a constant.

a) (5 points) Find the Hubble constant H at an arbitrary time t.

b) (5 points) What is the physical horizon distance at time t?

c) (5 points) Suppose a light pulse leaves galaxy A at time tA and arrives at galaxy B
at time tB . What is the coordinate distance between these two galaxies?

d) (5 points) What is the physical separation between galaxy A and galaxy B at time
tA? At time tB?

e) (5 points) At what time is the light pulse equidistant from the two galaxies?

f) (5 points) What is the speed of B relative to A at the time tA? (By “speed,” I mean
the rate of change of the physical distance with respect to cosmic time, d`p/dt.)

g) (5 points) For observations made at time t, what is the present value of the physical
distance as a function of the redshift z (and the time t)? What physical distance
corresponds to z = ∞? How does this compare with the horizon distance? (Note
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that this question does not refer to the galaxies A and B discussed in the earlier

parts. In particular, you should not assume that the light pulse left its source at

time tA.)

h) (5 points) Returning to the discussion of the galaxies A and B which were considered

in parts (c)-(f), suppose the radiation from galaxy A is emitted with total power P .

What is the power per area received at galaxy B?

i) (5 points) When the light pulse is received by galaxy B, a pulse is immediately sent

back toward galaxy A. At what time does this second pulse arrive at galaxy A?

PROBLEM 10: DID YOU DO THE READING (1998)? (20 points)

The following questions were taken from Problem 1, Quiz 1, 1998:

The following questions are worth 5 points each.

a) In 1917, Einstein introduced a model of the universe which was based on his newly

developed general relativity, but which contained an extra term in the equations

which he called the “cosmological term.” (The coefficient of this term is called the

“cosmological constant.”) What was Einstein’s motivation for introducing this term?

b) When the redshift of distant galaxies was first discovered, the earliest observations

were analyzed according to a cosmological model invented by the Dutch astronomer

W. de Sitter in 1917. At the time of its discovery, was this model thought to be static

or expanding? From the modern perspective, is the model thought to be static or

expanding?

c) The early universe is believed to have been filled with thermal, or black-body, radi-

ation. For such radiation the number density of photons and the energy density are

each proportional to powers of the absolute temperature T . Say

Number density ∝ Tn1

Energy density ∝ Tn2

Give the values of the exponents n1 and n2.

d) At about 3,000 K the matter in the universe underwent a certain chemical change

in its form, a change that was necessary to allow the differentiation of matter into

galaxies and stars. What was the nature of this change?
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PROBLEM 11: ANOTHER FLAT UNIVERSE WITH a(t) ∝ t3/5 (40 points)

The following was Problem 3, Quiz 1, 1998:

Consider a flat universe which is filled with some peculiar form of matter, so that
the Robertson–Walker scale factor behaves as

a(t) = bt3/5 ,

where b is a constant.

a) (5 points) Find the Hubble constant H at an arbitrary time t.

b) (10 points) Suppose a message is transmitted by radio signal (traveling at the speed
of light c) from galaxy A to galaxy B. The message is sent at cosmic time t1, when the
physical distance between the galaxies is `0. At what cosmic time t2 is the message
received at galaxy B? (Express your answer in terms of `0, t1, and c.)

c) (5 points) Upon receipt of the message, the creatures on galaxy B immediately send
back an acknowledgement, by radio signal, that the message has been received. At
what cosmic time t3 is the acknowledgment received on galaxy A? (Express your
answer in terms of `0, t1, t2, and c.)

d) (10 points) The creatures on galaxy B spend some time trying to decode the message,
finally deciding that it is an advertisement for Kellogg’s Corn Flakes (whatever that
is). At a time ∆t after the receipt of the message, as measured on their clocks, they
send back a response, requesting further explanation. At what cosmic time t4 is the
response received on galaxy A? In answering this part, you should not assume that
∆t is necessarily small. (Express your answer in terms of `0, t1, t2, t3, ∆t, and c.)

e) (5 points) When the response is received by galaxy A, the radio waves will be red-
shifted by a factor 1 + z. Give an expression for z. (Express your answer in terms
of `0, t1, t2, t3, t4, ∆t, and c.)

f) (5 points; No partial credit) If the time ∆t introduced in part (d) is small, the time
difference t4− t3 can be expanded to first order in ∆t. Calculate t4− t3 to first order
accuracy in ∆t. (Express your answer in terms of `0, t1, t2, t3, t4, ∆t, and c.) [Hint:
while this part can be answered by using brute force to expand the answer in part
(d), there is an easier way.]

∗PROBLEM 12: THE DECELERATION PARAMETER

The following problem was Problem 2, Quiz 2, 1992, where it counted 10 points out of
100.

Many standard references in cosmology define a quantity called the deceleration
parameter q, which is a direct measure of the slowing down of the cosmic expansion.
The parameter is defined by

q ≡ −ä(t)
a(t)

ȧ2(t)
.
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Find the relationship between q and Ω for a matter-dominated universe. [In case you
have forgotten, Ω is defined by

Ω = ρ/ρc ,

where ρ is the mass density and ρc is the critical mass density (i.e., that mass density
which corresponds to k = 0).]

PROBLEM 13: A RADIATION-DOMINATED FLAT UNIVERSE

We have learned that a matter-dominated homogeneous and isotropic universe can
be described by a scale factor a(t) obeying the equation(

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
.

This equation in fact applies to any form of mass density, so we can apply it to a universe
in which the mass density is dominated by the energy of photons. Recall that the mass
density of nonrelativistic matter falls off as 1/a3(t) as the universe expands; the mass of
each particle remains constant, and the density of particles falls off as 1/a3(t) because
the volume increases as a3(t). For the photon-dominated universe, the density of photons
falls of as 1/a3(t), but in addition the frequency (and hence the energy) of each photon
redshifts in proportion to 1/a(t). Since mass and energy are equivalent, the mass density
of the gas of photons falls off as 1/a4(t).

For a flat (i.e., k = 0) matter-dominated universe we learned that the scale factor
a(t) is proportional to t2/3. How does a(t) behave for a photon-dominated universe?

PROBLEM 14: DID YOU DO THE READING?

The following problem was taken from Problem 1, Quiz 1, 2004, where each part counted
5 points, for a total of 25 points. The reading assignment included the first three chapters
of Ryden, Introduction to Cosmology, and the first three chapters of Weinberg, The
First Three Minutes.

(a) In 1826, the astronomer Heinrich Olber wrote a paper on a paradox regarding the
night sky. What is Olber’s paradox? What is the primary resolution of it?

(b) What is the value of the Newtonian gravitational constant G in Planck units? The
Planck length is of the order of 10−35 m, 10−15 m, 1015 m, or 1035 m?

(c) What is the Cosmological Principle? Is the Hubble expansion of the universe con-
sistent with it? (For the latter question, a simple “yes” or “no” will suffice.)

(d) In the “Standard Model” of the universe, when the universe cooled to about 3× 10a

K, it became transparent to photons, and today we observe these as the Cosmic
Microwave Background (CMB) at a temperature of about 3× 10b K. What are the
integers a and b?

(e) What did the universe primarily consist of at about 1/100th of a second after the
Big Bang? Include any constituent that is believed to have made up more than 1%
of the mass density of the universe.



8.286 QUIZ 1 REVIEW PROBLEMS, FALL 2018 p. 16

∗PROBLEM 15: SPECIAL RELATIVITY DOPPLER SHIFT

The following problem was taken from Problem 2, Quiz 1, 2004, where it counted 20
points.

Consider the Doppler shift of radio waves, for a case in which both the source and the
observer are moving. Suppose the source is a spaceship moving with a speed vs relative
to the space station Alpha-7, while the observer is on another spaceship, moving in the
opposite direction from Alpha-7 with speed vo relative to Alpha-7.

(a) (10 points) Calculate the Doppler shift z of the radio wave as received by the observer.
(Recall that radio waves are electromagnetic waves, just like light except that the
wavelength is longer.)

(b) (10 points) Use the results of part (a) to determine vtot, the velocity of the source
spaceship as it would be measured by the observer spaceship. (8 points will be given
for the basic idea, whether or not you have the right answer for part (a), and 2 points
will be given for the algebra.)

PROBLEM 16: DID YOU DO THE READING?

The following question was taken from Problem 1, Quiz 1, 2005, where it counted 25
points.

(a) (4 points) What was the first external galaxy that was shown to be at a distance
significantly greater than the most distant known objects in our galaxy? How was
the distance estimated?

(b) (5 points) What is recombination? Did galaxies begin to form before or after recom-
bination? Why?

(c) (4 points) In Chapter IV of his book, Weinberg develops a “recipe for a hot universe,”
in which the matter of the universe is described as a gas in thermal equilbrium at
a very high temperature, in the vicinity of 109 K (several thousand million degrees
Kelvin). Such a thermal equilibrium gas is completely described by specifying its
temperature and the density of the conserved quantities. Which of the following is
on this list of conserved quantities? Circle as many as apply.

(i) baryon number (ii) energy per particle (iii) proton number
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(iv) electric charge (v) pressure

(d) (4 points) The wavelength corresponding to the mean energy of a CMB (cosmic mi-
crowave background) photon today is approximately equal to which of the following
quantities? (You may wish to look up the values of various physical constants at the
end of the quiz.)

(i) 2 fm (2× 10−15 m)

(ii) 2 microns (2× 10−6 m)

(iii) 2 mm (2× 10−3 m)

(iv) 2 m.

(e) (4 points) What is the equivalence principle?

(f) (4 points) Why is it difficult for Earth-based experiments to look at the small wave-
length portion of the graph of CMB energy density per wavelength vs. wavelength?

∗PROBLEM 17: TRACING A LIGHT PULSE THROUGH A
RADIATION-DOMINATED UNIVERSE

The following problem was taken from Problem 3, Quiz 1, 2005, where it counted 25
points.

Consider a flat universe that expands with a scale factor

a(t) = bt1/2 ,

where b is a constant. We will learn later that this is the behavior of the scale factor for
a radiation-dominated universe.

(a) (5 points) At an arbitrary time t = tf , what is the physical horizon distance? (By
“physical,” I mean as usual the distance in physical units, such as meters or cen-
timeters, as measured by a sequence of rulers, each of which is at rest relative to the
comoving matter in its vicinity.)

(b) (3 points) Suppose that a photon arrives at the origin, at time tf , from a distant
piece of matter that is precisely at the horizon distance at time tf . What is the time
te at which the photon was emitted?

(c) (2 points) What is the coordinate distance from the origin to the point from which
the photon was emitted?

(d) (10 points) For an arbitrary time t in the interval te ≤ t ≤ tf , while the photon is
traveling, what is the physical distance `p(t) from the origin to the location of the
photon?

(e) (5 points) At what time tmax is the physical distance of the photon from the origin
at its largest value?
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PROBLEM 18: TRANSVERSE DOPPLER SHIFTS

The following problem was taken from Problem 4, Quiz 1, 2005, where it counted 20
points.

(a) (8 points) Suppose the spaceship Xanthu
is at rest at location (x=0, y=a, z=0) in
a Cartesian coordinate system. (We as-
sume that the space is Euclidean, and
that the distance scales in the problem
are small enough so that the expansion
of the universe can be neglected.) The
spaceship Emmerac is moving at speed
v0 along the x-axis in the positive direc-
tion, as shown in the diagram, where v0

is comparable to the speed of light. As
the Emmerac crosses the origin, it re-
ceives a radio signal that had been sent
some time earlier from the Xanthu. Is

the radiation received redshifted or blueshifted? What is the redshift z (where neg-
ative values of z can be used to describe blueshifts)?

(b) (7 points) Now suppose that the Em-
merac is at rest at the origin, while
the Xanthu is moving in the negative x-
direction, at y = a and z = 0, as shown
in the diagram. That is, the trajectory of
the Xanthu can be taken as

(x=− v0t, y=a, z=0) .

At t = 0 the Xanthu crosses the y-axis,
and at that instant it emits a radio sig-
nal along the y-axis, directed at the ori-
gin. The radiation is received some time
later by the Emmerac. In this case, is

the radiation received redshifted or blueshifted? What is the redshift z (where again
negative values of z can be used to describe blueshifts)?

(c) (5 points) Is the sequence of events described in (b) physically distinct from the
sequence described in (a), or is it really the same sequence of events described in
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a reference frame that is moving relative to the reference frame used in part (a)?

Explain your reasoning in a sentence or two. (Hint: note that there are three objects

in the problem: Xanthu, Emmerac, and the photons of the radio signal.)

∗PROBLEM 19: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND (15

points)

This problem was Problem 3 on Quiz 1, 2007.

Consider a high-speed merry-go-round which is similar to the one discussed in Prob-

lem 3 of Problem Set 1, but which has two levels. That is, there are four evenly spaced

cars which travel around a central hub at speed v at a distance R from a central hub,

and also another four cars that are attached to extensions of the four radial arms, each

moving at a speed 2v at a distance 2R from the center. In this problem we will consider

only light waves, not sound waves, and we will assume that v is not negligible compared

to c, but that 2v < c.

We learned in Problem Set 1 that there is no redshift when light from one car at radius

R is received by an observer on another car at radius R.

(a) (5 points) Suppose that cars 5–8 are all emitting light waves in all directions. If an

observer in car 1 receives light waves from each of these cars, what redshift z does

she observe for each of the four signals?

(b) (10 points) Suppose that a spaceship is receding to the right at a relativistic speed

u along a line through the hub, as shown in the diagram. Suppose that an observer

in car 6 receives a radio signal from the spaceship, at the time when the car is in the

position shown in the diagram. What redshift z is observed?
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PROBLEM 20: SIGNAL PROPAGATION IN A FLAT MATTER-
DOMINATED UNIVERSE (55 points)

The following problem was on Quiz 1, 2009.

Consider a flat, matter-dominated universe, with scale factor

a(t) = bt2/3 ,

where b is an arbitrary constant. For the following questions, the answer to any part may
contain symbols representing the answers to previous parts, whether or not the previous
part was answered correctly.

(a) (10 points) At time t = t1, a light signal is sent from galaxy A. Let `p,sA(t) denote
the physical distance of the signal from A at time t. (Note that t = 0 corresponds to
the origin of the universe, not to the emission of the signal.) (i) Find the speed of
separation of the light signal from A, defined as d`p,sA/dt. What is the value of this
speed (ii) at the time of emission, t1, and (iii) what is its limiting value at arbitrarily
late times?

(b) (5 points) Suppose that there is a second galaxy, galaxy B, that is located at a
physical distance cH−1 from A at time t1, where H(t) denotes the Hubble expansion
rate and c is the speed of light. (cH−1 is called the Hubble length.) Suppose that the
light signal described above, which is emitted from galaxy A at time t1, is directed
toward galaxy B. At what time t2 does it arrive at galaxy B?

(c) (10 points) Let `p,sB(t) denote the physical distance of the light signal from galaxy
B at time t. (i) Find the speed of approach of the light signal towards B, defined as
−d`p,sB/dt. What is the value of this speed (ii) at the time of emission, t1, and (iii)
at the time of reception, t2?

(d) (10 points) If an astronomer on galaxy A observes the light arriving from galaxy B
at time t1, what is its redshift zBA?

(e) (10 points) Suppose that there is another galaxy, galaxy C, also
located at a physical distance cH−1 from A at time t1, but in
a direction orthogonal to that of B. If galaxy B is observed
from galaxy C at time t1, what is the observed redshift zBC?
Recall that this universe is flat, so Euclidean geometry applies.

(f) (10 points) Suppose that galaxy A, at time t1, emits electromagnetic radiation spher-
ically symmetrically, with power output P . (P might be measured, for example, in
watts, where 1 watt = 1 joule/second.) What is the radiation energy flux J that is
received by galaxy B at time t2, when the radiation reaches galaxy B? (J might be
measured, for example, in watts per meter2. Units are mentioned here only to help
clarify the meaning of these quantities — your answer should have no explicit units,
but should be expressed in terms of any or all of the given quantities t1, P , and c,
plus perhaps symbols representing the answers to previous parts.)
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PROBLEM 21: DID YOU DO THE READING? (25 points)

The following problem appeared on Quiz 1 of 2011.

(a) (10 points) Hubble’s law relates the distance of galaxies to their velocity. The
Doppler effect provides an accurate tool to measure velocity, while the measure
of cosmic distances is more problematic. Explain briefly the method that Hubble
used to estimate the distance of galaxies in deriving his law.

(b) (5 points) One expects Hubble’s law to hold as a consequence of the Cosmological
Principle. What does the Cosmological Principle state?

(c) (10 points) Give a brief definition for the words homogeneity and isotropy. Then say
for each of the following two statements whether it is true or false. If true explain
briefly why. If false give a counter-example. You should assume Euclidean geometry
(which Weinberg implicitly assumed in his discussion).

(i) If the universe is isotropic around one point then it has to be homogeneous.

(ii) If the universe is isotropic around two or more distinct points then it has to be
homogeneous.

(d) Bonus question: (2 points extra credit) If we allow curved (i.e., non-Euclidean) spaces,
is it true that a universe which is isotropic around two distinct points has to be
homogeneous? If true explain briefly why, and otherwise give a counter-example.

∗PROBLEM 22: THE TRAJECTORY OF A PHOTON ORIGINATING
AT THE HORIZON (25 points)

The following problem appeared on Quiz 1 of 2011.

Consider again a flat matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Let t0 denote the current time.

(a) (5 points) What is the current value of the physical horizon distance `p,horizon(t0)?
That is, what is the present distance of the most distant matter that can be seen,
limited only by the speed of light.

(b) (5 points) Consider a photon that is arriving now from an object that is just at the
horizon. Our goal is to trace the trajectory of this object. Suppose that we set up
a coordinate system with us at the origin, and the source of the photon along the
positive x-axis. What is the coordinate x0 of the photon at t = 0?

(c) (5 points) As the photon travels from the source to us, what is its coordinate x(t)
as a function of time?

(d) (5 points) What is the physical distance `p(t) between the photon and us as a function
of time?

(e) (5 points) What is the maximum physical distance `p,max(t) between the photon and
us, and at what time tmax does it occur?
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PROBLEM 23: DID YOU DO THE READING (2016)?

The following problem was taken from Quiz 1, 2016, where it counted 35 points.

(a) (5 points) The Milky Way has been known since ancient times as a band of light
stretching across the sky. We now recognize the Milky Way as the galaxy of stars
in which we live, with a large collection of stars, including our sun, arranged in a
giant disk. Since the individual stars are mostly too small for our eyes to resolve, we
observe the collective light from these stars, concentrated in the plane of the disk.
The idea that the Milky Way is actually a disk of stars was proposed by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(b) (5 points) Once it was recognized that we live in a galaxy, it was initially assumed
that ours was the only galaxy. The suggestion that some of the patches of light
known as nebulae might actually be other galaxies like our own was made by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(c) (5 points) The first firm evidence that there is more than one galaxy stemmed from
the ability to observe the Andromeda Nebula with high enough resolution to distin-
guish its individual stars. In particular, the observation of Cepheid variable stars in
Andromeda allowed a distance estimate that place it well outside the Milky Way.
The observation of Cepheid variable stars in Andromeda was first made by

(i) Johannes Kepler, in 1610.

(ii) Isaac Newton, in 1695.

(iii Thomas Wright, in 1750.
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(iv) Immanuel Kant, in 1755.

(v) Henrietta Swan Leavitt and Harlow Shapley in 1915.

(vi) Edwin Hubble, in 1923.

(d) (5 points) The first hint that the universe is filled with radiation with an effective
temperature near 3 K, although not recognized at the time, was an observation of
absorption lines in cyanogen (CN) by Adams and McKellar in 1941. They observed
dark spectral lines which they interpreted as absorption by the cyanogen of light
coming from the star behind the gas cloud. Explain in a few sentences how these ab-
sorption lines can be used to make inferences about the cosmic background radiation
bathing the cyanogen gas cloud.

(e) (5 points) As the universe expands, the temperature of the cosmic microwave back-
ground

(i) goes up in proportion to the scale factor a(t).

(ii) stays constant.

(iii) goes down in proportion to 1/a(t).

(iv) goes down in proportion to 1/a2(t).

(f) (5 points) When Hubble measured the value of his constant, he found H−1 ≈ 100
million years, 2 billion years, 10 billion years, or 20 billion years?

(g) (5 points) Explain in a few sentences what is meant by the equivalence principle?

PROBLEM 24: OBSERVING A DISTANT GALAXY IN A MATTER-
DOMINATED FLAT UNIVERSE

The following problem was taken from Quiz 1, 2016, where it counted 40 points.

Suppose that we are living in a matter-dominated flat universe, with a scale factor
given by

a(t) = bt2/3 ,

where b is a constant. The present time is denoted by t0.

(a) (5 points) If we measure time in seconds, distance in meters, and coordinate distances
in notches, what are the units of b?

(b) (5 points) Suppose that we observe a distant galaxy which is one half of a “Hubble
length” away, which means that the physical distance today is `p = 1

2cH
−1
0 , where c
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is the speed of light and H0 is the present value of the Hubble expansion rate. What

is the proper velocity vp ≡ d`p(t)
dt of this galaxy relative to us?

(c) (5 points) What is the coordinate distance `c between us and the distant galaxy?

If you did not answer the previous part, you may still continue with the following parts,
using the symbol `c for the coordinate distance to the galaxy.

(d) (5 points) At what time te was the light that we are now receiving from the galaxy
emitted?

(e) (5 points) What is the redshift z of the light that we are now receiving from the
distant galaxy?

(f) (10 points) Consider a light pulse that leaves the distant galaxy at time te, as cal-
culated in part (d), and arrives here at the present time, t0. Calculate the physical
distance rp(t) between the light pulse and us. Find rp(t) as a function of t for all t
between te and t0.

(g) (5 points) If we send a radio message now to the distant galaxy, at what time tr will
it be received?
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING (2000)? (35 points)

a) Doppler predicted the Doppler effect in 1842.

b) Most of the stars of our galaxy, including our sun, lie in a flat disk. We therefore

see much more light when we look out from earth along the plane of the disk than

when we look in any other direction.

c) Hubble’s original paper on the expansion of the universe was based on a study of

only 18 galaxies. Well, at least Weinberg’s book says 18 galaxies. For my own

book I made a copy of Hubble’s original graph, which seems to show 24 black dots,

each of which represents a galaxy, as reproduced below. The vertical axis shows

the recession velocity, in kilometers per second. The solid line shows the best fit

to the black dots, each of which represents a galaxy. Each open circle represents a

group of the galaxies shown as black dots, selected by their proximity in direction

and distance; the broken line is the best fit to these points. The cross shows a

statistical analysis of 22 galaxies for which individual distance measurements were

not available. I am not sure why Weinberg refers to 18 galaxies, but it is possible

that the text of Hubble’s article indicated that 18 of these galaxies were measured

with more reliability than the rest.
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d)

e) During a time interval in which the linear size of the universe grows by 1%, the

horizon distance grows by more than 1%. To see why, note that the horizon distance
is equal to the scale factor times the comoving horizon distance. The scale factor
grows by 1% during this time interval, but the comoving horizon distance also grows,
since light from the distant galaxies has had more time to reach us.

f) Arno A. Penzias and Robert W. Wilson, Bell Telephone Laboratories.

g) (i) the

average distance between photons: proportional to the size of the universe

(Photons are neither created nor destroyed, so the only effect is that the aver-
age distance between them is stretched with the expansion. Since the universe
expands uniformly, all distances grow by the same factor.)

(ii) the typical wavelength of the radiation: proportional to the size of

the universe (See Lecture Notes 3.)

(iii) the number density of photons in the radiation: inversely propor-

tional to the cube of the size of the universe (From (i), the average distance
between photons grows in proportion to the size of the universe. Since the vol-
ume of a cube is proportional to the cube of the length of a side, the average
volume occupied by a photon grows as the cube of the size of the universe. The
number density is the inverse of the average volume occupied by a photon.)

(iv) the energy density of the radiation: inversely proportional to the

fourth power of the size of the universe (The energy of each photon is propor-

tional to its frequency, and hence inversely proportional to its wavelength. So
from (ii) the energy of each photon is inversely proportional to the size of the
universe, and from (iii) the number density is inversely proportional to the cube
of the size.)

(v) the temperature of the

radiation: inversely proportional to the size of the universe (The tempera-

ture is directly proportional to the average energy of a photon, which according
to (iv) is inversely proportional to the size of the universe.)
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PROBLEM 2: THE STEADY-STATE UNIVERSE THEORY (25 points)

a) (10 points) According to Eq. (3.7),

H(t) =
1

a(t)

da

dt
.

So in this case
1

a(t)

da

dt
= H0 ,

which can be rewritten as
da

a
= H0 dt .

Integrating,
ln a = H0 t+ c ,

where c is a constant of integration. Exponentiating,

a = beH0 t ,

where b = ec is an arbitrary constant.

b) (15 points) Consider a cube of side `c drawn on the comoving coordinate system
diagram. The physical length of each side is then a(t) `c, so the physical volume is

V (t) = a3(t) `3c .

Since the mass density is fixed at ρ = ρ0, the total mass inside this cube at any given
time is given by

M(t) = a3(t) `3c ρ0 .

In the absence of matter creation the total mass within a comoving volume would not
change, so the increase in mass described by the above equation must be attributed
to matter creation. The rate of matter creation per unit time per unit volume is
then given by

Rate =
1

V (t)

dM

dt

=
1

a3(t) `3c
3a2(t)

da

dt
`3c ρ0

=
3

a

da

dt
ρ0

= 3H0 ρ0 .
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You were not asked to insert numbers, but it is worthwhile to consider the numerical
value after the exam, to see what this answer is telling us. Suppose we take H0 = 70
km-sec−1-Mpc−1, and take ρ0 to be the critical density, ρc = 3H2

0/8πG. Then

To put this number into more meaningful terms, note that the mass of a hydrogen
atom is 1.67 × 10−27 kg, and that 1 year = 3.156 × 107 s. The rate of matter
production required for the steady-state universe theory can then be expressed as
roughly one hydrogen atom per cubic meter per billion years! Needless to say, such a
rate of matter production is totally undetectable, so the steady-state theory cannot
be ruled out by the failure to detect matter production.
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PROBLEM 3: DID YOU DO THE READING (2007)? (25 points)

The following 5 questions are each worth 5 points:

(a) In the 1940’s, three astrophysicists proposed a “steady state” theory of cosmology,
in which the universe has always looked about the same as it does now. State the
last name of at least one of these authors. (Bonus points: you can earn 1 point each
for naming the other two authors, and hence up to 2 additional points, but 1 point
will be taken off for each incorrect answer.)

Ans: (Weinberg, page 8, or Ryden, page 16): Hermann Bondi, Thomas Gold, and
Fred Hoyle.

(b) In 1917, a Dutch astronomer named Willem de Sitter did which one of the following
accomplishments:

(i) measured the size of the Milky Way galaxy, finding it to be about one billion
light-years in diameter.

(ii) resolved Cepheid variable stars in Andromeda and thereby obtained persua-
sive evidence that Andromeda is not within our own galaxy, but is apparently
another galaxy like our own.

(iii) published a catalog, Nebulae and Star Clusters, listing 103 objects that as-
tronomers should avoid when looking for comets.

(iv) published a model for the universe, based on general relativity, which appeared

to be static but which produced a redshift proportional to the distance.

(v) discovered that the orbital periods of the planets are proportional to the 3/2
power of the semi-major axis of their elliptical orbits.

Discussion: (i) is false in part because de Sitter was not involved in the measurement
of the size of the Milky Way, but the most obvious error is in the size of the Milky
Way. Its actual diameter is reported by Weinberg (p. 16) to be about 100,000 light-
years, although now it is believed to be about twice that large. (ii) is an accurate
description of an observation by Edwin Hubble in 1923 (Weinberg, pp. 19-20). (iii)
describes the work of Charles Messier in 1781 (Weinberg, p. 17). (v) is of course one
of Kepler’s laws of planetary motion.

(c) In 1964–65, Arno A. Penzias and Robert W. Wilson observed a flux of microwave
radiation coming from all directions in the sky, which was interpreted by a group of
physicists at a neighboring institution as the cosmic background radiation left over
from the big bang. Circle the two items on the following list that were not part of
the story behind this spectacular discovery:

(i) Bell Telephone Laboratory (ii) MIT (iii) Princeton University

(iv) pigeons (v) ground hogs (vi) Hubble’s constant

(vii) liquid helium (viii) 7.35 cm
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(Grading: 3 pts for 1 correct answer, 5 for 2 correct answers, and -2 for each incorrect
answer, but the minimum score is zero.)

Discussion: The discovery of the cosmic background radiation was described in some
detail by Weinberg in Chapter 3. The observation was done at Bell Telephone
Laboratories, in Holmdel, New Jersey. The detector was cooled with liquid helium
to minimize electrical noise, and the measurements were made at a wavelength of
7.35 cm. During the course of the experiment the astronomers had to eject a pair
of pigeons who were roosting in the antenna. Penzias and Wilson were not initially
aware that the radiation they discovered might have come from the big bang, but
Bernard Burke of MIT put them in touch with a group at Princeton University
(Robert Dicke, James Peebles, P.G. Roll, and David Wilkinson) who were actively
working on this hypothesis.

(d) Important predictions of the Copernican theory were confirmed by the discovery
of the aberration of starlight (which showed that the velocity of the Earth has the
time-dependence expected for rotation about the Sun) and by the behavior of the
Foucault pendulum (which showed that the Earth rotates). These discoveries were
made

(i) during Copernicus’ lifetime.

(ii) approximately two and three decades after Copernicus’ death, respectively.

(iii) about one hundred years after Copernicus’ death.

(iv) approximately two and three centuries after Copernicus’ death, respectively.

Ryden discusses this on p. 5. The aberration of starlight was discovered in 1728,
while the Foucault pendulum was invented in 1851.

(e) If one averages over sufficiently large scales, the universe appears to be homogeneous
and isotropic. How large must the averaging scale be before this homogeneity and
isotropy set in?

(i) 1 AU (1 AU = 1.496× 1011 m).

(ii) 100 kpc (1 kpc = 1000 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(iii) 1 Mpc (1 Mpc = 106 pc).

(iv) 10 Mpc.

(v) 100 Mpc.

(vi) 1000 Mpc.

This issue is discussed in Ryden’s book on p. 11.
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PROBLEM 4: AN EXPONENTIALLY EXPANDING UNIVERSE

(a) According to Eq. (3.7), the Hubble constant is related to the scale factor by

H = ȧ/a .

So

H =
χa0e

χt

a0eχt
= χ .

(b) According to Eq. (3.8), the coordinate velocity of light is given by

dx

dt
=

c

a(t)
=

c

a0
e−χt .

Integrating,

x(t) =
c

a0

∫ t

0

e−χt
′
dt′

=
c

a0

[
− 1

χ
e−χt

′
]t

0

=
c

χa0

[
1− e−χt

]
.

(c) From Eq. (3.11), or from the front of the quiz, one has

1 + z =
a(tr)

a(te)
.

Here te = 0, so

1 + z =
a0e

χtr

a0

=⇒ eχtr = 1 + z

=⇒ tr =
1

χ
ln(1 + z) .

(d) The coordinate distance is x(tr), where x(t) is the function found in part (b), and
tr is the time found in part (c). So

eχtr = 1 + z ,
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and
x(tr) =

c

χa0

[
1− e−χtr

]
=

c

χa0

[
1− 1

1 + z

]
=

cZ

χa0(1 + z) .

The physical distance at the time of reception is found by multiplying by the scale
factor at the time of reception, so

`p(tr) = a(tr)x(tr) =
czeχtr

χ(1 + z)
=

cz

χ
.

PROBLEM 5: DID YOU DO THE READING (1986/1990 composite)?

(a) The distinguishing quantity is Ω ≡ ρ/ρc. The universe is open if Ω < 1, flat if Ω = 1,
or closed if Ω > 1.

(b) The temperature of the microwave background today is about 3 Kelvin. (The best
determination to date* was made by the COBE satellite, which measured the tem-
perature as 2.728 ± 0.004 Kelvin. The error here is quoted with a 95% confidence
limit, which means that the experimenters believe that the probability that the true
value lies outside this range is only 5%.)

(c) The cosmic microwave background is observed to be highly isotropic.

(d) The distance to the Andromeda nebula is roughly 2 million light years.

(e) 1929.

(f) 2 billion years. Hubble’s value for Hubble’s constant was high by modern standards,
by a factor of 5 to 10.

(g) The absolute luminosity (i.e., the total light output) of a Cepheid variable star
appears to be highly correlated with the period of its pulsations. This correlation
can be used to estimate the distance to the Cepheid, by measuring the period and
the apparent luminosity. From the period one can estimate the absolute luminosity
of the star, and then one uses the apparent luminosity and the 1/r2 law for the
intensity of a point source to determine the distance r.

(h) 107 light-years.

(i) Arno A. Penzias and Robert W. Wilson, Bell Telephone Laboratories.

(j) Princeton University.

* Astrophysical Journal, vol. 473, p. 576 (1996): The Cosmic Microwave Background
Spectrum from the Full COBE FIRAS Data Sets, D.J. Fixsen, E.S. Cheng, J.M. Gales,
J.C. Mather, R.A. Shafer, and E.L. Wright.
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PROBLEM 6: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLUTION

The key to this problem is to work in comoving coordinates.

[Some students have asked me why one cannot use “physical” coordinates, for which
the coordinates really measure the physical distances. In principle one can use any
coordinate system on likes, but the comoving coordinates are the simplest. In any other
system it is difficult to write down the trajectory of either a particle or a light-beam.
In comoving coordinates it is easy to write the trajectory of either a light beam, or a
particle which is moving with the expansion of the universe (and hence standing still
in the comoving coordinates). Note, by the way, that when one says that a particle
is standing still in comoving coordinates, one has not really said very much about it’s
trajectory. One has said that it is moving with the matter which fills the universe, but
one has not said, for example, how the distance between the particle and origin varies
with time. The answer to this latter question is then determined by the evolution of the
scale factor, a(t).]

(a) The physical separation at to is given by the scale factor times the coordinate dis-
tance. The coordinate distance is found by integrating the coordinate velocity, so

`p(to) = a(to)

∫ to

te

c dt′

a(t′)
= bt1/3o

∫ to

te

c dt′

bt′1/3
=

3

2
ct1/3o

[
t2/3o − t2/3e

]

=
3

2
cto

[
1− (te/to)

2/3
]
.

(b) From the front of the exam,

1 + z =
a(to)

a(te)
=

(
to
te

)1/3

=⇒ z =

(
to
te

)1/3

− 1 .

(c) By combining the answers to (a) and (b), one has

`p(to) =
3

2
cto

[
1− 1

(1 + z)2

]
.
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(d) The physical distance of the light pulse at time t is equal to a(t) times the coordinate
distance. The coordinate distance at time t is equal to the starting coordinate
distance, `c(te), minus the coordinate distance that the light pulse travels between
time te and time t. Thus,

`p(t) = a(t)

[
`c(te)−

∫ t

te

c dt′

a(t′)

]

= a(t)

[∫ to

te

c dt′

a(t′)
−
∫ t

te

c dt′

a(t′)

]

= a(t)

∫ to

t

c dt′

a(t′)

= bt1/3
∫ to

t

c dt′

bt′1/3
=

3

2
ct1/3

[
t2/3o − t2/3

]

=
3

2
ct

[(
to
t

)2/3

− 1

]
.

PROBLEM 7: ANOTHER FLAT UNIVERSE WITH AN UNUSUAL TIME
EVOLUTION (40 points)

a) (5 points) The cosmological redshift is given by the usual form,

1 + z =
a(t0)

a(te)
.

For light emitted by an object at time te, the redshift of the received light is

1 + z =
a(t0)

a(te)
=

(
t0
te

)γ
.

So,

z =

(
t0
te

)γ
− 1 .

b) (5 points) The coordinates t0 and te are cosmic time coordinates. The “look-back”
time as defined in the exam is then the interval t0 − te. We can write this as

t0 − te = t0

(
1− te

t0

)
.
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We can use the result of part (a) to eliminate te/t0 in favor of z. From (a),

te
t0

= (1 + z)−1/γ .

Therefore,

t0 − te = t0

[
1− (1 + z)−1/γ

]
.

c) (10 points) The present value of the physical distance to the object, `p(t0), is found
from

`p(t0) = a(t0)

∫ t0

te

c

a(t)
dt .

Calculating this integral gives

`p(t0) =
ctγ0

1− γ

[
1

tγ−1
0

− 1

tγ−1
e

]
.

Factoring tγ−1
0 out of the parentheses gives

`p(t0) =
ct0

1− γ

[
1−

(
t0
te

)γ−1
]

.

This can be rewritten in terms of z and H0 using the result of part (a) as well as,

H0 =
ȧ(t0)

a(t0)
=
γ

t0
.

Finally then,

`p(t0) = cH−1
0

γ

1− γ

[
1− (1 + z)

γ−1
γ

]
.

d) (10 points) A nearly identical problem was worked through in Problem 8 of Problem
Set 1.

The energy of the observed photons will be redshifted by a factor of (1 + z). In
addition the rate of arrival of photons will be redshifted relative to the rate of photon
emmission, reducing the flux by another factor of (1+z). Consequently, the observed
power will be redshifted by two factors of (1 + z) to P/(1 + z)2.
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Imagine a hypothetical sphere in comoving coordinates as drawn above, centered on
the radiating object, with radius equal to the comoving distance `c. Now consider the
photons passing through a patch of the sphere with physical area A. In comoving
coordinates the present area of the patch is A/a(t0)2. Since the object radiates
uniformly in all directions, the patch will intercept a fraction (A/a(t0)2)/(4π`2c) of
the photons passing through the sphere. Thus the power hitting the area A is

(A/a(t0)2)

4π`2c

P

(1 + z)2
.

The radiation energy flux J , which is the received power per area, reaching the earth
is then given by

J =
1

4π`p(t0)2

P

(1 + z)2

where we used `p(t0) = a(t0)`c. Using the result of part (c) to write J in terms of
P,H0, z, and γ gives,

J =
H2

0

4πc2

(
1− γ
γ

)2
P

(1 + z)2
[
1− (1 + z)

γ−1
γ

]2 .

e) (10 points) Following the solution of Problem 1 of Problem Set 1, we can introduce
a fictitious relay station that is at rest relative to the galaxy, but located just next
to the jet, between the jet and Earth. As in the previous solution, the relay station
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simply rebroadcasts the signal it receives from the source, at exactly the instant that
it receives it. The relay station therefore has no effect on the signal received by the
observer, but allows us to divide the problem into two simple parts.

The distance between the jet and the relay station is very short compared to cos-
mological scales, so the effect of the expansion of the universe is negligible. For this
part of the problem we can use special relativity, which says that the period with
which the relay station measures the received radiation is given by

∆trelay station =

√
1− v

c

1 + v
c

×∆tsource .

Note that I have used the formula from the front of the exam, but I have changed
the size of v, since the source in this case is moving toward the relay station, so the
light is blue-shifted. To observers on Earth, the relay station is just a source at rest
in the comoving coordinate system, so

∆tobserved = (1 + z)∆trelay station .

Thus,

1 + zJ ≡
∆tobserved

∆tsource
=

∆tobserved

∆trelay station

∆trelay station

∆tsource

= (1 + z)|cosmological × (1 + z)|special relativity

= (1 + z)

√
1− v

c

1 + v
c

.

Thus,

zJ = (1 + z)

√
1− v

c

1 + v
c

− 1 .

Note added: In looking over the solutions to this problem, I found that a substan-
tial number of students wrote solutions based on the incorrect assumption that the
Doppler shift could be treated as if it were entirely due to motion. These students
used the special relativity Doppler shift formula to convert the redshift z of the
galaxy to a velocity of recession, then subtracted from this the speed v of the jet,
and then again used the special relativity Doppler shift formula to find the Doppler
shift corresponding to this composite velocity. However, as discussed at the end of
Lecture Notes 3, the cosmological Doppler shift is given by

1 + z ≡ ∆to
∆te

=
a(to)

a(te)
, (3.11)

and is not purely an effect caused by motion. It is really the combined effect of the
motion of the distant galaxies and the gravitational field that exists between the
galaxies, so the special relativity formula relating z to v does not apply.
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PROBLEM 8: DID YOU DO THE READING (1996)?

a) The lines were dark, caused by absorption of the radiation in the cooler, outer layers
of the sun.

b) Individual stars in the Andromeda Nebula were resolved by Hubble in 1923.

[The other names and dates are not without significance. In 1609 Galileo built his
first telescope; during 1609-10 he resolved the individual stars of the Milky Way, and
also discovered that the surface of the moon is irregular, that Jupiter has moons
of its own, that Saturn has handles (later recognized as rings), that the sun has
spots, and that Venus has phases. In 1755 Immanuel Kant published his Universal
Natural History and Theory of the Heavens, in which he suggested that at least
some of the nebulae are galaxies like our own. In 1912 Henrietta Leavitt discovered
the relationship between the period and luminosity of Cepheid variable stars. In
the 1950s Walter Baade and Allan Sandage recalibrated the extra-galactic distance
scale, reducing the accepted value of the Hubble constant by about a factor of 10.]

c)

(i) True. [In 1941, A. McKellar discovered that cyanogen clouds behave as if they
are bathed in microwave radiation at a temperature of about 2.3◦K, but no
connection was made with cosmology.]

(ii) False. [Any radiation reflected by the clouds is far too weak to be detected. It
is the bright starlight shining through the cloud that is detectable.]

(iii) True. [Electromagnetic waves at these wavelengths are mostly blocked by the
Earth’s atmosphere, so they could not be detected directly until high altitude
balloons and rockets were introduced into cosmic background radiation research
in the 1970s. Precise data was not obtained until the COBE satellite, in 1990.]

(iv) True. [The microwave radiation can boost the CN molecule from its ground
state to a low-lying excited state, a state in which the C and N atoms rotate
about each other. The population of this low-lying state is therefore determined
by the intensity of the microwave radiation. This population is measured by
observing the absorption of starlight passing through the clouds, since there
are absorption lines in the visible spectrum caused by transitions between the
low-lying state and higher energy excited states.]

(v) False. [No chemical reactions are seen.]

d) Aristarchus. [The heliocentric picture was never accepted by other Greek philoso-
phers, however, and was not revived until the publication of De Revolutionibus Or-
bium Coelestium (On the Revolutions of the Celestial Spheres) by Copernicus in
1543.]

e) (ii) Any patch of the night sky would look as bright as the surface of the sun.
[Explanation: The crux of the argument is that the brightness of an object, measured
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for example by the power per area (i.e., flux) hitting the retina of your eye, does not
change as the object is moved further away. The power falls off with the square of
the distance, but so does the area of the image on your retina — so the power per
area is independent of distance. Under the assumptions stated, your line of sight
will eventually hit a star no matter what direction you are looking. The energy flux
on your retina will therefore be the same as in the image of the sun, so the entire
sky will appear as bright as the surface of the sun.]

PROBLEM 9: A FLAT UNIVERSE WITH a(t) ∝ t3/5

a) In general, the Hubble constant is given by H = ȧ/a, where the overdot denotes a
derivative with respect to cosmic time t. In this case

H =
1

bt3/5
3

5
bt−2/5 =

3

5t
.

b) In general, the (physical) horizon distance is given by

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ .

In this case one has

`p,horizon(t) = bt3/5
∫ t

0

c

bt′3/5
dt′ = ct3/5

5

2

[
t2/5 − 02/5

]
=

5

2
ct .

c) The coordinate speed of light is c/a(t), so the coordinate distance that light travels
between tA and tB is given by

`c =

∫ tB

tA

c

a(t′)
dt′ =

∫ tB

tA

c

bt′3/5
dt′ =

5c

2b

(
t
2/5
B − t2/5A

)
.

d) The physical separation is just the scale factor times the coordinate separation, so

`p(tA) = a(tA) `c =
5

2
ctA

[(
tB
tA

)2/5

− 1

]
.
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`p(tB) = a(tB) `c =
5

2
ctB

[
1−

(
tA
tB

)2/5
]
.

e) Let teq be the time at which the light pulse is equidistant from the two galaxies. At
this time it will have traveled a coordinate distance `c/2, where `c is the answer to
part (c). Since the coordinate speed is c/a(t), the time teq can be found from:∫ teq

tA

c

a(t′)
dt′ =

1

2
`c

5c

2b

(
t2/5eq − t

2/5
A

)
=

5c

4b

(
t
2/5
B − t2/5A

)
Solving for teq,

teq =

[
t
2/5
A + t

2/5
B

2

]5/2

.

f) According to Hubble’s law, the speed is equal to Hubble’s constant times the physical
distance. By combining the answers to parts (a) and (d), one has

v = H(tA) `p(tA)

=
3

5tA

5

2
ctA

[(
tB
tA

)2/5

− 1

]
=

3

2
c

[(
tB
tA

)2/5

− 1

]
.

g) The redshift for radiation observed at time t can be written as

1 + z =
a(t)

a(te)
,

where te is the time that the radiation was emitted. Solving for te,

te =
t

(1 + z)5/3
.

As found in part (d), the physical distance that the light travels between te and t,
as measured at time t, is given by

`p(t) = a(t)

∫ t

te

c

a(t′)
dt′ =

5

2
ct

[
1−

(
te
t

)2/5
]
.
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Substituting the expression for te, one has

`p(t) =
5

2
ct

[
1− 1

(1 + z)2/3

]
.

As z →∞, this expression approaches

lim
z→∞

`p(t) =
5

2
ct ,

which is exactly equal to the horizon distance. It is a general rule that the horizon
distance corresponds to infinite redshift z.

h) Again we will view the problem in comoving coordinates. Put galaxy B at the origin,
and galaxy A at a coordinate distance `c along the x-axis. Draw a sphere of radius `c,
centered galaxy A. Also draw a detector on galaxy B, with physical area A (measured
at the present time).

The energy from the quasar will radiate uniformly on the sphere. The detector has
a physical area A, so in the comoving coordinate picture its area in square notches
would be A/a(tB)2. The detector therefore occupies a fraction of the sphere given
by

[A/a(tB)2]

4π`2c
=

A

4π`p(tB)2
,
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so this fraction of the emitted photons will strike the detector.

Next consider the rate of arrival of the photons at the sphere. In lecture we figured
out that if a periodic wave is emitted at time tA and observed at time tB , then the
rate of arrival of the wave crests will be slower than the rate of emission by a redshift
factor 1 + z = a(tB)/a(tA). The same argument will apply to the rate of arrival of
photons, so the rate of photon arrival at the sphere will be slower than the rate of
emission by the factor 1 + z, reducing the energy flux by this factor. In addition,
each photon is redshifted in frequency by 1 + z. Since the energy of each photon is
proportional to its frequency, the energy flux is reduced by an additional factor of
1 + z. Thus, the rate at which energy reaches the detector is

Power hitting detector =
A

4π`p(tB)2

P

(1 + z)2
.

The red shift z of the light pulse received at galaxy B is given by

1 + z =
a(tB)

a(tA)
=

(
tB
tA

)3/5

.

Using once more the expression for `P (tB) from part (d), one has

J =
Power hitting detector

A
=

P (tA/tB)6/5

25π c2 t2B

[
1−

(
tA
tB

)2/5
]2 .

The problem is worded so that tA, and not z, is the given variable that determines
how far galaxy A is from galaxy B. In practice, however, it is usually more useful to
express the answer in terms of the redshift z of the received radiation. One can do
this by using the above expression for 1 + z to eliminate tA in favor of z, finding

J =
P

25π c2 t2B(1 + z)2/3
[
(1 + z)2/3 − 1

]2 .

i) Let t′A be the time at which the light pulse arrives back at galaxy A. The pulse must
therefore travel a coordinate distance `c (the answer to part (c)) between time tB
and t′A, so ∫ t′A

tB

c

a(t′)
dt′ = `c .
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Using the answer from (c) and integrating the left-hand side,

5c

2b

(
t
′2/5
A − t2/5B

)
=

5c

2b

(
t
2/5
B − t2/5A

)
.

Solving for t′A,

t′A =
(

2t
2/5
B − t2/5A

)5/2

.

PROBLEM 10: DID YOU DO THE READING (1998)?

a) Einstein believed that the universe was static, and the cosmological term was neces-
sary to prevent a static universe from collapsing under the attractive force of normal
gravity. [The repulsive effect of a cosmological constant grows linearly with distance,
so if the coefficient is small it is important only when the separations are very large.
Such a term can be important cosmologically while still being too small to be de-
tected by observations of the solar system or even the galaxy. Recent measurements
of distant supernovas (z ≈ 1), which you may have read about in the newspapers,
make it look like maybe there is a cosmological constant after all! Since the cosmo-
logical constant is the hot issue in cosmology this season, we will want to look at it
more carefully. The best time will be after Lecture Notes 7.]

b) At the time of its discovery, de Sitter’s model was thought to be static [although it
was known that the model predicted a redshift which, at least for nearby galaxies,
was proportional to the distance]. From a modern perspective the model is thought
to be expanding.

[It seems strange that physicists in 1917 could not correctly determine if the
theory described a universe that was static or expanding, but the mathematical
formalism of general relativity can be rather confusing. The basic problem is that
when space is not Euclidean there is no simple way to assign coordinates to it.
The mathematics of general relativity is designed to be valid for any coordinate
system, but the underlying physics can sometimes be obscured by a peculiar choice
of coordinates. A change of coordinates can not only distort the apparent geometry of
space, but it can also mix up space and time. The de Sitter model was first written
down in coordinates that made it look static, so everyone believed it was. Later
Arthur Eddington and Hermann Weyl (independently) calculated the trajectories of
test particles, discovering that they flew apart.]

c) n1 = 3, and n2 = 4.

d) Above 3,000 K the universe was so hot that the atoms were ionized, dissociated into
nuclei and free electrons. At about this temperature, however, the universe was cool
enough so that the nuclei and electrons combined to form neutral atoms.
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[This process is usually called “recombination,” although the prefix “re-” is
totally inaccurate, since in the big bang theory these constituents had never been
previously combined. As far as I know the word was first used in this context by
P.J.E. Peebles, so I once asked him why the prefix was used. He replied that this word
is standard terminology in plasma physics, and was carried over into cosmology.]

[Regardless of its name, recombination was crucial for the clumping of matter
into galaxies and stars, because the pressure of the photons in the early universe was
enormous. When the matter was ionized, the free electrons interacted strongly with
the photons, so the pressure of these photons prevented the matter from clumping.
After recombination, however, the matter became very transparent to radiation, and
the pressure of the radiation became ineffective.]

[Incidentally, at roughly the same time as recombination (with big uncertain-
ties), the mass density of the universe changed from being dominated by radiation
(photons and neutrinos) to being dominated by nonrelativistic matter. There is no
known underlying connection between these two events, and it seems to be some-
thing of a coincidence that they occurred at about the same time. The transition
from radiation-domination to matter-domination also helped to promote the clump-
ing of matter, but the effect was much weaker than the effect of recombination—
because of the very high velocity of photons and neutrinos, their pressure remained
a significant force even after their mass density became much smaller than that of
matter.]

PROBLEM 11: ANOTHER FLAT UNIVERSE WITH a(t) ∝ t3/5

a) According to Eq. (3.7) of the Lecture Notes,

H(t) =
1

a(t)

da

dt
.

For the special case of a(t) = bt3/5, this gives

H(t) =
1

bt3/5
3

5
bt−2/5 =

3

5t
.

b) According to Eq. (3.8) of the Lecture Notes, the coordinate velocity of light (in
comoving coordinates) is given by

dx

dt
=

c

a(t)
.
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Since galaxies A and B have physical separation `0 at time t1, their coordinate
separation is given by

`c =
`0

bt
3/5
1

.

The radio signal must cover this coordinate distance in the time interval from t1 to
t2, which implies that ∫ t2

t1

c

a(t)
dt =

`0

bt
3/5
1

.

Using the expression for a(t) and integrating,

5c

2b

(
t
2/5
2 − t2/51

)
=

`0

bt
3/5
1

,

which can be solved for t2 to give

t2 =

(
1 +

2`0
5ct1

)5/2

t1 .

c) The method is the same as in part (b). The coordinate distance between the two
galaxies is unchanged, but this time the distance must be traversed in the time
interval from t2 to t3. So, ∫ t3

t2

c

a(t)
dt =

`0

bt
3/5
1

,

which leads to
5c

2b

(
t
2/5
3 − t2/52

)
=

`0

bt
3/5
1

.

Solving for t3 gives

t3 =

[(
t2
t1

)2/5

+
2`0
5ct1

]5/2

t1 .

The above answer is perfectly acceptable, but one could also replace t2 by using the
answer to part (b), which gives

t3 =

(
1 +

4`0
5ct1

)5/2

t1 .
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[Alternatively, one could have begun the problem by considering the full round
trip of the radio signal, which travels a coordinate distance 2`c during the time
interval from t1 to t3. The problem then becomes identical to part (b), except that
the coordinate distance `c is replaced by 2`c, and t2 is replaced by t3. One is led
immediately to the answer in the form of the previous equation.]

d) Cosmic time is defined by the reading of suitably synchronized clocks which are each
at rest with respect to the matter of the universe at the same location. (For this
problem we will not need to think about the method of synchronization.) Thus, the
cosmic time interval between the receipt of the message and the response is the same
as what is measured on the galaxy B clocks, which is ∆t. The response is therefore
sent at cosmic time t2 + ∆t. The coordinate distance between the galaxies is still
`0/a(t1), so ∫ t4

t2+∆t

c

a(t)
dt =

`0

bt
3/5
1

.

Integration gives
5c

2b

[
t
2/5
4 − (t2 + ∆t)

2/5
]

=
`0

bt
3/5
1

,

which can be solved for t4 to give

t4 =

[(
t2 + ∆t

t1

)2/5

+
2`0
5ct1

]5/2

t1 .

e) From the formula at the front of the exam,

1 + z =
a(tobserved)

a(temitted)
=

a(t4)

a(t2 + ∆t)
=

(
t4

t2 + ∆t

)3/5

.

So,

z =
a(tobserved)

a(temitted)
=

a(t4)

a(t2 + ∆t)
=

(
t4

t2 + ∆t

)3/5

− 1 .

f) If ∆t is small compared to the time that it takes a(t) to change significantly, then
the interval between a signal sent at t3 and a signal sent at t3 + ∆t will be received
with a redshift identical to that observed between two successive crests of a wave.
Thus, the separation between the receipt of the acknowledgement and the receipt of
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the response will be a factor (1 + z) times longer than the time interval between the
sending of the two signals, and therefore

t4 − t3 = (1 + z)∆t+O(∆t2)

=

(
t4

t2 + ∆t

)3/5

∆t+O(∆t2) .

Since the answer contains an explicit factor of ∆t, the other factors can be evaluated
to zeroth order in ∆t:

t4 − t3 =

(
t4
t2

)3/5

∆t+O(∆t2) ,

where to first order in ∆t the t4 in the numerator could equally well have been
replaced by t3.

For those who prefer the brute force approach, the answer to part (d) can be
Taylor expanded in powers of ∆t. To first order one has

t4 = t3 +
∂t4
∂∆t

∣∣∣∣
∆t=0

∆t+O(∆t2) .

Evaluating the necessary derivative gives

∂t4
∂∆t

=

[(
t2 + ∆t

t1

)2/5

+
2`0
5ct1

]3/2 (
t2 + ∆t

t1

)−3/5

,

which when specialized to ∆t = 0 becomes

∂t4
∂∆t

∣∣∣∣
∆t=0

=

[(
t2
t1

)2/5

+
2`0
5ct1

]3/2 (
t2
t1

)−3/5

.

Using the first boxed answer to part (c), this can be simplified to

∂t4
∂∆t

∣∣∣∣
∆t=0

=

(
t3
t1

)3/5 (
t2
t1

)−3/5

=

(
t3
t2

)3/5

.

Putting this back into the Taylor series gives

t4 − t3 =

(
t3
t2

)3/5

∆t+O(∆t2) ,

in agreement with the previous answer.
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PROBLEM 12: THE DECELERATION PARAMETER

From the front of the exam, we are reminded that

ä = −4π

3
Gρa

and (
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
,

where a dot denotes a derivative with respect to time t. The critical mass density ρc is
defined to be the mass density that corresponds to a flat (k = 0) universe, so from the
equation above it follows that (

ȧ

a

)2

=
8π

3
Gρc .

Substituting into the definition of q, we find

q = −ä(t)
a(t)

ȧ2(t)
= − ä

a

(a
ȧ

)2

=

(
4π

3
Gρ

)(
3

8πGρc

)
=

1

2

ρ

ρc
=

1

2
Ω .

PROBLEM 13: A RADIATION-DOMINATED FLAT UNIVERSE

The flatness of the model universe means that k = 0, so(
ȧ

a

)2

=
8π

3
Gρ .

Since

ρ(t) ∝ 1

a4(t)
,

it follows that
da

dt
=

const

a
.

Rewriting this as
a da = const dt ,

the indefinite integral becomes

1

2
a2 = (const)t+ c′ ,



8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 49

where c′ is a constant of integration. Different choices for c′ correspond to different
choices for the definition of t = 0. We will follow the standard convention of choosing
c′ = 0, which sets t = 0 to be the time when a = 0. Thus the above equation implies
that a2 ∝ t, and therefore

a(t) ∝ t1/2

for a photon-dominated flat universe.

PROBLEM 14: DID YOU DO THE READING (2004)? (25 points)

(a) In 1826, the astronomer Heinrich Olber wrote a paper on a paradox regarding the
night sky. What is Olber’s paradox? What is the primary resolution of it?

(Ryden, Chapter 2, Pages 6-8)

Ans: Olber’s paradox is that the night sky appears to be dark, instead of being
uniformly bright. The primary resolution is that the universe has a finite age, and so
the light from stars beyond the horizon distance has not reached us yet. (However,
even in the steady-state model of the universe, the paradox is resolved because the
light from distant stars will be red-shifted beyond the visible spectrum).

(b) What is the value of the Newtonian gravitational constant G in Planck units? The
Planck length is of the order of 10−35 m, 10−15 m, 1015 m, or 1035 m?

(Ryden, Chapter 1, Page 3)

Ans: G = 1 in Planck units, by definition.

The Planck length is of the order of 10−35 m. (Note that this answer could be
obtained by a process of elimination as long as you remember that the Planck length
is much smaller than 10−15 m, which is the typical size of a nucleus).

(c) What is the Cosmological Principle? Is the Hubble expansion of the universe con-
sistent with it?

(Weinberg, Chapter 2, Pages 21-23; Ryden, Chapter 2, Page 11)

Ans: The Cosmological Principle states that there is nothing special about our
location in the universe, i.e. the universe is homogeneous and isotropic.

Yes, the Hubble expansion is consistent with it (since there is no center of expansion).

(d) In the “Standard Model” of the universe, when the universe cooled to about 3 ×
10a K, it became transparent to photons, and today we observe these as the Cosmic
Microwave Background (CMB) at a temperature of about 3× 10b K. What are the
integers a and b?

(Weinberg, Chapter 3; Ryden, Chapter 2, Page 22)
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a = 3, b = 0.

(e) What did the universe primarily consist of at about 1/100th of a second after the
Big Bang? Include any constituent that is believed to have made up more than 1%
of the mass density of the universe.

(Weinberg, Chapter 1, Page 5)

Ans: Electrons, positrons, neutrinos, and photons.

PROBLEM 15: SPECIAL RELATIVITY DOPPLER SHIFT (20 points)

(a) The easiest way to solve this problem is by a double application of the standard
special-relativity Doppler shift formula, which was given on the front of the exam:

z =

√
1 + β

1− β
− 1 , (18.1)

where β = v/c. Remembering that the wavelength is stretched by a factor 1 + z, we
find immediately that the wavelength of the radio wave received at Alpha-7 is given
by

λAlpha−7 =

√
1 + vs/c

1− vs/c
λemitted . (18.2)

The photons that are received by the observer are in fact never received by Alpha-
7, but the wavelength found by the observer will be the same as if Alpha-7 acted
as a relay station, receiving the photons and retransmitting them at the received
wavelength. So, applying Eq. (18.1) again, the wavelength seen by the observer can
be written as

λobserved =

√
1 + vo/c

1− vo/c
λAlpha−7 . (18.3)

Combining Eqs. (18.2) and (18.3),

λobserved =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
λemitted , (18.4)

so finally

z =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
− 1 . (18.5)

(b) Although we used the presence of Alpha-7 in determining the redshift z of Eq. (18.5),
the redshift is not actually affected by the space station. So the special-relativity
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Doppler shift formula, Eq. (18.1), must directly describe the redshift resulting from
the relative motion of the source and the observer. Thus√

1 + vtot/c

1− vtot/c
− 1 =

√
1 + vo/c

1− vo/c

√
1 + vs/c

1− vs/c
− 1 . (18.6)

The equation above determines vtot in terms of vo and vs, so the rest is just algebra.
To simplify the notation, let βtot ≡ vtot/c, βo ≡ vo/c, and βs ≡ vs/c. Then

1 + βtot =
1 + βo
1− βo

1 + βs
1− βs

(1− βtot)

βtot

[
1 +

1 + βo
1− βo

1 + βs
1− βs

]
=

1 + βo
1− βo

1 + βs
1− βs

− 1

βtot

[
(1− βo − βs + βoβs) + (1 + βo + βs + βoβs)

(1− βo)(1− βs)

]
=

(1 + βo + βs + βoβs)− (1− βo − βs + βoβs)

(1− βo)(1− βs)

βtot[2(1 + βoβs)] = 2(βo + βs)

βtot =
βo + βs
1 + βoβs

vtot =
vo + vs

1 +
vovs
c2

. (18.7)

The final formula is the relativistic expression for the addition of velocities. Note
that it guarantees that |vtot| ≤ c as long as |vo| ≤ c and |vs| ≤ c.

PROBLEM 16: DID YOU DO THE READING (2005)? (25 points)

(a) (4 points) What was the first external galaxy that was shown to be at a distance
significantly greater than the most distant known objects in our galaxy? How was
the distance estimated?

Ans: (Weinberg, page 20) The first galaxy shown to be at a distance beyond the size
of our galaxy was Andromeda, also known by its Messier number, M31. It is the
nearest spiral galaxy to our galaxy. The distance was determined (by Hubble) using
Cepheid variable stars, for which the absolute luminosity is proportional to the pe-
riod. A measurement of a particular Cepheid’s period determines the star’s absolute
luminosity, which, compared to the measured luminosity, determines the distance
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to the star. (Hubble’s initial measurement of the distance to Andromeda used a
badly-calibrated version of this period-luminosity relationship and consequently un-
derestimated the distance by more than a factor of two; nonetheless, the initial
measurement still showed that the Andromeda Nebula was an order of magnitude
more distant than the most distant known objects in our own galaxy.)

(b) (5 points) What is recombination? Did galaxies begin to form before or after recom-
bination? Why?

Ans: (Weinberg, pages 64 and 73) Recombination refers to the formation of neutral
atoms out of charged nuclei and electrons. Galaxies began to form after recom-
bination. Prior to recombination, the strong electromagnetic interactions between
photons and matter produced a high pressure which effectively counteracted the
gravitational attraction between particles. Once the universe became transparent to
radiation, the matter no longer interacted significantly with the photons and conse-
quently began to undergo gravitational collapse into large clumps.

(c) (4 points) In Chapter IV of his book, Weinberg develops a “recipe for a hot universe,”
in which the matter of the universe is described as a gas in thermal equilbrium at
a very high temperature, in the vicinity of 109 K (several thousand million degrees
Kelvin). Such a thermal equilibrium gas is completely described by specifying its
temperature and the density of the conserved quantities. Which of the following is
on this list of conserved quantities? Circle as many as apply.

(i) baryon number (ii) energy per particle (iii) proton number

(iv) electric charge (v) pressure

Ans: (Weinberg, page 91) The correct answers are (i) and (iv). A third conserved
quantity, lepton number, was not included in the multiple-choice options.

(d) (4 points) The wavelength corresponding to the mean energy of a CMB (cosmic mi-
crowave background) photon today is approximately equal to which of the following
quantities? (You may wish to look up the values of various physical constants at the
end of the quiz.)

(i) 2 fm (2× 10−15 m)

(ii) 2 microns (2× 10−6 m)

(iii) 2 mm (2× 10−3 m)

(iv) 2 m.

Ans: (Ryden, page 23) The correct answer is (iii).

If you did not remember this number, you could estimate the answer by remem-
bering that the characteristic temperature of the cosmic microwave background is
approximately 3 Kelvin. The typical photon energy is then on the order of kT , from
which we can find the frequency as E = hν. The wavelength of the photon is then
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λ = ν/c. This approximation gives λ = 5.3 mm, which is not equal to the correct
answer, but it is much closer to the correct answer than to any of the other choices.

(e) (4 points) What is the equivalence principle?

Ans: (Ryden, page 27) In its simplest form, the equivalence principle says that the
gravitational mass of an object is identical to its inertial mass. This equality implies
the equivalent statement that it is impossible to distinguish (without additional
information) between an observer in a reference frame accelerating with acceleration
~a and an observer in an inertial reference frame subject to a gravitational force
−mobs~a.

(Actually, what the equivalence principle really says is that the ratio of the gravi-
tational to inertial masses mg/mi is universal, that is, independent of the material
properties of the object in question. The ratio does not necessarily need to be 1.
However, once we know that the two types of masses are proportional, we can sim-
ply define the gravitational coupling G to make them equal. To see this, consider a
theory of gravity where mg/mi = q. Then the gravitational force law is

mia = −GMmg

r2
,

or

a = −GqM
r2

.

At this point, if we define G′ = Gq, we have a gravitational theory with gravitational
coupling G′ and inertial mass equal to gravitational mass.)

(f) (4 points) Why is it difficult for Earth-based experiments to look at the small wave-
length portion of the graph of CMB energy density per wavelength vs. wavelength?

Ans: (Weinberg, page 67) The Earth’s atmosphere is increasingly opaque for wave-
length shorter than .3 cm. Therefore, radiation at these wavelengths will be absorbed
and rescattered by the Earth’s atmosphere; observations of the cosmic microwave
background at small wavelengths must be performed above the Earth’s atmosphere.

PROBLEM 17: TRACING A LIGHT PULSE THROUGH A RADIATION-
DOMINATED UNIVERSE

(a) The physical horizon distance is given in general by

`p,horizon = a(t)

∫ tf

0

c

a(t)
dt ,

so in this case

`p,horizon = bt1/2
∫ tf

0

c

bt1/2
dt = 2ctf .
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(b) If the source is at the horizon distance, it means that a photon leaving the source at

t = 0 would just be reaching the origin at tf . So, te = 0 .

(c) The coordinate distance between the source and the origin is the coordinate horizon

distance, given by

`c,horizon =

∫ tf

0

c

bt1/2
dt =

2ct
1/2
f

b
.

(d) The photon starts at coordinate distance 2c
√
tf/b, and by time t it will have traveled

a coordinate distance ∫ t

0

c

bt′1/2
dt′ =

2c
√
t

b

toward the origin. Thus the photon will be at coordinate distance

`c =
2c

b

(√
tf −

√
t
)

from the origin, and hence a physical distance

`p(t) = a(t)`c = 2c
(√

t tf − t
)
.

(e) To find the maximum of `p(t), we differentiate it and set the derivative to zero:

d`p
dt

=

(√
tf
t
− 2

)
c ,

so the maximum occurs when √
tf
tmax

= 2 ,

or

tmax =
1

4
tf .
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PROBLEM 18: TRANSVERSE DOPPLER SHIFTS

(a) Describing the events in the coordinate system shown, the Xanthu is at rest, so its
clocks run at the same speed as the coordinate system time variable, t. The emission
of the wavecrests of the radio signal are therefore separated by a time interval equal
to the time interval as measured by the source, the Xanthu:

∆t = ∆ts .

Since the Emmerac is moving perpendicular to the path of the radio waves, at the
moment of reception its distance from the Xanthu is at a minimum, and hence its
rate of change is zero. Hence successive wavecrests will travel the same distance, as
long as c∆t� a. Since the wavecrests travel the same distance, the time separation
of their arrival at the Emmerac is ∆t, the same as the time separation of their
emission. The clocks on the Emmerac, however, and running slowly by a factor of

γ =
1√

1− v2

c2

.

The time interval between wave crests as measured by the receiver, on the Emmerac,
is therefore smaller by a factor of γ,

∆tr =
∆ts
γ

.

Thus, there is a blueshift. The redshift parameter z is defined by

∆tr
∆ts

= 1 + z ,

so
1

γ
= 1 + z ,

or

z =
1− γ
γ

.

Recall that γ > 1, so z is negative.

(b) Describing this situation in the coordinate system shown, this time the source on the
Xanthu is moving, so the clocks at the source are running slowly. The time between
wavecrests, measured in coordinate time t, is therefore larger by a factor of γ than
∆ts, the time as measured by the clock on the source:

∆t = γ∆ts .
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Since the radio signal is emitted when the Xanthu is at its minimum separation from
the Emmerac, the rate of change of the separation is zero, so each wavecrest travels
the same distance (again assuming that c∆t� a). Since the Emmerac is at rest, its
clocks run at the same speed as the coordinate time t, and hence the time interval
between crests, as measured by the receiver, is

∆tr = ∆t = γ∆ts .

Thus the time interval as measured by the receiver is longer than that measured by

the source, and hence it is a redshift. The redshift parameter z is given by

1 + z =
∆tr
∆ts

= γ ,

so

z = γ − 1 .

(c) The events described in (a) can be made to look a lot like the events described in (b)
by transforming to a frame of reference that is moving to the right at speed v0 —
i.e., by transforming to the rest frame of the Emmerac. In this frame the Emmerac
is of course at rest, and the Xanthu is traveling on the trajectory

(x=− v0t, y=a, z=0) ,

as in part (b). However, just as the transformation causes the x-component of the
velocity of the Xanthu to change from zero to a negative value, so the x-component
of the velocity of the radio signal will be transformed from zero to a negative value.
Thus in this frame the radio signal will not be traveling along the y-axis, so the
events will not match those described in (b). The situations described in (a) and (b)
are therefore physically distinct (which they must be if the redshifts are different, as
we calculated above).

PROBLEM 19: A TWO-LEVEL HIGH-SPEED MERRY-GO-ROUND (15
points)
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(a) Since the relative positions of all the cars remain fixed as the merry-go-round rotates,
each successive pulse from any given car to any other car takes the same amount of
time to complete its trip. Thus there will be no Doppler shift caused by pulses taking
different amounts of time; the only Doppler shift will come from time dilation.

We will describe the events from the point of view of an inertial reference frame
at rest relative to the hub of the merry-go-round, which we will call the laboratory
frame. This is the frame in which the problem is described, in which the inner cars
are moving at speed v, and the outer cars are moving at speed 2v. In the laboratory
frame, the time interval between the wave crests emitted by the source ∆tLab

S will be
exactly equal to the time interval ∆tLab

O between two crests reaching the observer:

∆tLab
O = ∆tLab

S .

The clocks on the merry-go-round cars are moving relative to the laboratory frame,
so they will appear to be running slowly by the factor

γ1 =
1√

1− v2/c2

for the inner cars, and by the factor

γ2 =
1√

1− 4v2/c2

for the outer cars. Thus, if we let ∆tS denote the time between crests as measured
by a clock on the source, and ∆tO as the time between crests as measured by a clock
moving with the observer, then these quantities are related to the laboratory frame
times by

γ2∆tS = ∆tLab
S and γ1∆tO = ∆tLab

O .

To make sure that the γ-factors are on the right side of the equation, you should keep
in mind that any time interval should be measured as shorter on the moving clocks
than on the lab clocks, since these clocks appear to run slowly. Putting together the
equations above, one has immediately that

∆tO =
γ2

γ1
∆tS .

The redshift z is defined by

∆tO ≡ (1 + z) ∆tS ,
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so

z =
γ2

γ1
− 1 =

√
1− v2

c2

1− 4v2

c2

− 1 .

(b) For this part of the problem is useful to imagine a relay station located just to the
right of car 6 in the diagram, at rest in the laboratory frame. The relay station
rebroadcasts the waves as it receives them, and hence has no effect on the frequency
received by the observer, but serves the purpose of allowing us to clearly separate
the problem into two parts.

The first part of the discussion concerns the redshift of the signal as measured by the
relay station. This calculation would involve both the time dilation and a change
in path lengths between successive pulses, but we do not need to do it. It is the
standard situation of a source and observer moving directly away from each other,
as discussed at the end of Lecture Notes 1. The Doppler shift is given by Eq. (1.33),
which was included in the formula sheet. Writing the formula for a recession speed
u, it becomes

(1 + z)|relay =

√
1 + u

c

1− u
c

.

If we again use the symbol ∆tS for the time between wave crests as measured by a
clock on the source, then the time between the receipt of wave crests as measured
by the relay station is

∆tR =

√
1 + u

c

1− u
c

∆tS .

The second part of the discussion concerns the transmission from the relay station
to car 6. The velocity of car 6 is perpendicular to the direction from which the pulse
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is being received, so this is a transverse Doppler shift. Any change in path length
between successive pulses is second order in ∆t, so it can be ignored. The only
effect is therefore the time dilation. As described in the laboratory frame, the time
separation between crests reaching the observer is the same as the time separation
measured by the relay station:

∆tLab
O = ∆tR .

As in part (a), the time dilation implies that

γ2∆tO = ∆tLab
O .

Combining the formulas above,

∆O =
1

γ2

√
1 + u

c

1− u
c

∆tS .

Again ∆tO ≡ (1 + z) ∆tS , so

z =
1

γ2

√
1 + u

c

1− u
c

− 1 =

√(
1− 4v2

c2

) (
1 + u

c

)
1− u

c

− 1 .

PROBLEM 20: SIGNAL PROPAGATION IN A FLAT MATTER-
DOMINATED UNIVERSE (55 points)

(a)-(i) If we let `c(t) denote the coordinate distance of the light signal from A, then we can
make use of Eq. (3.8) from the lecture notes for the coordinate velocity of light:

d`c
dt

=
c

a(t)
. (20.1)

Integrating the velocity,

`c(t) =

∫ t

t1

cdt′

a(t′)
=
c

b

∫ t

t1

dt′

t′2/3

=
3c

b

[
t1/3 − t1/31

]
.

(20.2)
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The physical distance is then

`p,sA(t) = a(t)`c(t) = bt2/3
3c

b

[
t1/3 − t1/31

]
= 3c

(
t− t2/3t1/31

)
= 3ct

[
1−

(
t1
t

)1/3
]
.

(20.3)

We now need to differentiate, which is done most easily with the middle line of the
above equation:

d`p,sA
dt

= c

[
3− 2

(
t1
t

)1/3
]
. (20.4)

(ii) At t = t1, the time of emission, the above formula gives

d`p,sA
dt

= c . (20.5)

This is what should be expected, since the speed of separation of the light signal at
the time of emission is really just a local measurement of the speed of light, which
should always give the standard value c.

(iii) At arbitrarily late times, the second term in brackets in Eq. (20.4) becomes negligible,
so

d`p,sA
dt

→ 3c . (20.6)

Although this answer is larger than c, it does not violate relativity. Once the signal
is far from its origin it is carried by the expansion of the universe, and relativity
places no speed limit on the expansion of the universe.

(b) This part of the problem involves H(t1), so we can start by evaluating it:

H(t) =
ȧ(t)

a(t)
=

d
dt (bt

2/3)

bt2/3
=

2

3t
. (20.7)

Thus, the physical distance from A to B at time t1 is

`p,BA =
3

2
ct1 . (20.8)
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The coordinate distance is the physical distance divided by the scale factor, so

`c,BA =
cH−1(t1)

a(t1)
=

3
2ct1

bt
2/3
1

=
3c

2b
t
1/3
1 . (20.9)

Since light travels at a coordinate speed c/a(t), the light signal will reach galaxy B
at time t2 if

`c,BA =

∫ t2

t1

c

bt′2/3
dt′

=
3c

b

[
t
1/3
2 − t1/31

]
.

(20.10)

Setting the expressions (20.9) and (20.10) for `c,BA equal to each other, one finds

1

2
t
1/3
1 = t

1/3
2 − t1/31 =⇒ t

1/3
2 =

3

2
t
1/3
1 =⇒ t2 =

27

8
t1 . (20.11)

(c)-(i) Physical distances are additive, so if one adds the distance from A and the light
signal to the distance from the light signal to B, one gets the distance from A to B:

`p,sA + `p,sB = `p,BA . (20.12)

But `p,BA(t) is just the scale factor times the coordinate separation, a(t)`c,BA. Using
the previous relations (20.3) and (20.9) for `p,sA(t) and `c,BA, we find

3ct

[
1−

(
t1
t

)1/3
]

+ `p,sB(t) =
3

2
ct

1/3
1 t2/3 , (20.13)

so

`p,sB(t) =
9

2
ct

1/3
1 t2/3 − 3ct = 3ct

[
3

2

(
t1
t

)1/3

− 1

]
. (20.14)

As a check, one can verify that this expression vanishes for t = t2 = (27/8) t1, and
that it equals (3/2)ct1 at t = t1. But we are asked to find the speed of approach,
the negative of the derivative of Eq. (20.14):

Speed of approach = −d`p,sB
dt

= −3ct
1/3
1 t−1/3 + 3c

= 3c

[
1−

(
t1
t

)1/3
]
.

(20.15)
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(ii) At the time of emission, t = t1, Eq. (20.15) gives

Speed of approach = 0 . (20.16)

This makes sense, since at t = t1 galaxy B is one Hubble length from galaxy A,
which means that its recession velocity is exactly c. The recession velocity of the
light signal leaving A is also c, so the rate of change of the distance from the light
signal to B is initially zero.

(iii) At the time of reception, t = t2 = (27/8) t1, Eq. (20.15) gives

Speed of approach = c , (20.17)

which is exactly what is expected. As in part (a)-(ii), this is a local measurement of
the speed of light.

(d) To find the redshift, we first find the time tBA at which a light pulse must be emitted
from galaxy B so that it arrives at galaxy A at time t1. Using the coordinate distance
given by Eq. (20.9), the time of emission must satisfy

3c

2b
t
1/3
1 =

∫ t1

tBA

c

bt′2/3
dt′ =

3c

b

(
t
1/3
1 − t1/3BA

)
, (20.18)

which can be solved to give

tBA =
1

8
t1 . (20.19)

The redshift is given by

1 + zBA =
a(t1)

a(tBA)
=

(
t1
tBA

)2/3

= 4 . (20.20)

Thus,

zBA = 3 . (20.21)

(e) Applying Euclidean geometry to the triangle C-A-B shows that the physical distance
from C to B, at time t1, is

√
2cH−1. The coordinate distance is also larger than the

A-B separation by a factor of
√

2. Thus,

`c,BC =
3
√

2c

2b
t
1/3
1 . (20.22)
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If we let tBC be the time at which a light pulse must be emitted from galaxy B so

that it arrives at galaxy C at time t1, we find

3
√

2c

2b
t
1/3
1 =

∫ t1

tBC

c

bt′2/3
dt′ =

3c

b

(
t
1/3
1 − t1/3BC

)
, (20.23)

which can be solved to find

tBC =

(
1−
√

2

2

)3

t1 . (20.24)

Then

1 + zBC =
a(t1)

a(tBC)
=

(
t1
tBC

)2/3

=
1(

1−
√

2
2

)2 , (20.25)

and

zBC =
1(

1−
√

2
2

)2 − 1 . (20.26)

Full credit will be given for the answer in the form above, but it can be simplified

by rationalizing the fraction:

zBC =
1(

1−
√

2
2

)2

(
1 +

√
2

2

)2

(
1 +

√
2

2

)2 − 1

=
1 +
√

2 + 1
2

1
4

− 1

= 5 + 4
√

2 .

(20.27)

Numerically, zBC = 10.657.

(f) Following the solution to Problem 6 of Problem Set 2, we draw a diagram in comoving

coordinates, putting the source at the center of a sphere:
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The energy from galaxy A will radiate uniformly over the sphere. If the detector
has physical area AD, then in the comoving coordinate picture it has coordinate
area AD/a

2(t2), since the detection occurs at time t2 The full coordinate area of the
sphere is 4π`2c,BA, so the fraction of photons that hit the detector is

fraction =

[
A/a(t2)2

]
4π`2c,BA

. (20.28)

As in Problem 6, the power hitting the detector is reduced by two factors of (1 + z):
one factor because the energy of each photon is proportional to the frequency, and
hence is reduced by the redshift, and one more factor because the rate of arrival of
photons is also reduced by the redshift factor (1 + z). Thus,

Power hitting detector = P

[
A/a(t2)2

]
4π`2c,BA

1

(1 + z)2

= P

[
A/a(t2)2

]
4π`2c,BA

[
a(t1)

a(t2)

]2

= P
A

4π`2c,BA

a2(t1)

a4(t2)
.

(20.29)

The energy flux is given by

J =
Power hitting detector

A
, (20.30)

so

J =
P

4π`2c,BA

a2(t1)

a4(t2)
. (20.31)
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From here it is just algebra, using Eqs. (20.9) and (20.11), and a(t) = bt2/3:

J =
P

4π
[

3c
2b t

1/3
1

]2 b2t4/31

b4t
8/3
2

=
P

4π
[

3c
2b t

1/3
1

]2 b2t
4/3
1(

27
8

)8/3
b4t

8/3
1

=
P

4π
[

3c
2 t

1/3
1

]2 t
4/3
1(

3
2

)8
t
8/3
1

=
28

310π

P

c2t21

=
256

59, 049π

P

c2t21
.

(20.32)

It is debatable which of the last two expressions is the simplest, so I have boxed both of
them. One could also write

J = 1.380× 10−3 P

c2t21
. (20.33)

PROBLEM 21: DID YOU DO THE READING (2011)? (25 points)†

†Solution written by Daniele Bertolini.

(a) (10 points) To determine the distance of the galaxies he was observing Hubble used
so called standard candles. Standard candles are astronomical objects whose intrin-
sic luminosity is known and whose distance is inferred by measuring their apparent
luminosity. First, he used as standard candles variable stars, whose intrinsic lumi-
nosity can be related to the period of variation. Quoting Weinberg’s The First Three
Minutes, chapter 2, pages 19-20:

In 1923 Edwin Hubble was for the first time able to resolve the Andromeda Neb-
ula into separate stars. He found that its spiral arms included a few bright variable
stars, with the same sort of periodic variation of luminosity as was already familiar
for a class of stars in our galaxy known as Cepheid variables. The reason this was
so important was that in the preceding decade the work of Henrietta Swan Leavitt
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and Harlow Shapley of the Harvard College Observatory had provided a tight rela-
tion between the observed periods of variation of the Cepheids and their absolute
luminosities. (Absolute luminosity is the total radiant power emitted by an astro-
nomical object in all directions. Apparent luminosity is the radiant power received
by us in each square centimeter of our telescope mirror. It is the apparent rather
than the absolute luminosity that determines the subjective degree of brightness of
astronomical objects. Of course, the apparent luminosity depends not only on the ab-
solute luminosity, but also on the distance; thus, knowing both the absolute and the
apparent luminosities of an astronomical body, we can infer its distance.) Hubble,
observing the apparent luminosity of the Cepheids in the Andromeda Nebula, and
estimating their absolute luminosity from their periods, could immediately calculate
their distance, and hence the distance of the Andromeda Nebula, using the simple
rule that apparent luminosity is proportional to the absolute luminosity and inversely
proportional to the square of the distance.

He also used particularly bright stars as standard candles, as we deduce from page
25:

Returning now to 1929: Hubble estimated the distance to 18 galaxies from the appar-
ent luminosity of their brighest stars, and compared these distances with the galaxies’
respective velocities, determined spectroscopically from their Doppler shifts.

Note: since from reading just the first part of Weinberg’s discussion one could be
induced to think that Hubble used just Cepheids as standard candles, students who
mentioned only Cepheids got 9 points out of 10. In fact, however, Hubble was able
to identify Cepheid variables in only a few galaxies. The Cepheids were crucial,
because they served as a calibration for the larger distances, but they were not in
themselves sufficient.

(b) (5 points) Quoting Weinberg’s The First Three Minutes, chapter 2, page 21:

We would expect intuitively that at any given time the universe ought to look the same
to observers in all typical galaxies, and in whatever directions they look. (Here, and
below, I will use the label “typical” to indicate galaxies that do not have any large
peculiar motion of their own, but are simply carried along with the general cosmic
flow of galaxies.) This hypothesis is so natural (at least since Copernicus) that it has
been called the Cosmological Principle by the English astrophysicist Edward Arthur
Milne.

So the Cosmological principle basically states that the universe appears as homo-
geneous and isotropic (on scales of distance large enough) to any typical observer,
where typical is referred to observers with small local motion compared to the ex-
pansion flow. Ryden gives a more general definition of Cosmological Principle, which
is valid as well. Quoting Ryden’s Introduction to Cosmology, chapter 2, page 11 or
14 (depending on which version):
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However, modern cosmologists have adopted the cosmological principle, which

states: There is nothing special about our location in the universe. The cosmological

principle holds true only on large scales (of 100 Mpc or more).

(c) (10 points) Quoting again Ryden’s Introduction to Cosmology, chapter 2, page 9 or

11:

Saying that the universe is isotropic means that there are no preferred directions in

the universe; it looks the same no matter which way you point your telescope. Saying

that the universe is homogeneous means that there are no preferred locations in

the universe; it looks the same no matter where you set up your telescope.

(i) False. If the universe is isotropic around one point it does not need to be

homogeneous. A counter-example is a distribution of matter with spherical

symmetry, that is, with a density which is only a function of the radius but does

not depend on the direction: ρ(r, θ, φ) ≡ ρ(r). In this case for an observer at the

center of the distribution the universe looks isotropic but it is not homogeneous.

(ii) True. For the case of Euclidean geometry isotropy around two or more distinct

points does imply homogeneity. Weinberg shows this in chapter 2, page 24.

Consider two observers, and two arbitrary points A and B which we would like

to prove equivalent. Consider a circle through point A, centered on observer 1,

and another circle through point B, centered on observer 2. If C is a point on

the intersection of the two circles, then isotropy about the two observers implies

that A = C and B = C, and hence A = B. (This argument was good enough

for Weinberg and hence good enough to deserve full credit, but it is actually

incomplete: one can find points A and B for which the two circles will not

intersect. On your next problem set you will have a chance to invent a better

proof.)

(d) (2 points extra credit) False. If we relax the hypothesis of Euclidean geometry,

then isotropy around two points does not necessarily imply homogeneity. A counter-

example we mentioned in class is a two-dimensional universe consisting of the surface

of a sphere. Think of the sphere in three Euclidean dimensions, but the model “uni-

verse” consists only of its two-dimensional surface. Imagine latitude and longitude

lines to give coordinates to the surface, and imagine a matter distribution that de-

pends only on latitude. This would not be homogeneous, but it would look isotropic

to observers at both the north and south poles. While this example describes a two-

dimensional universe, which therefore cannot be our universe, we will learn shortly

how to construct a three-dimensional non-Euclidean universe with these same prop-

erties.



8.286 QUIZ 1 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 68

PROBLEM 22: THE TRAJECTORY OF A PHOTON ORIGINATING AT
THE HORIZON (25 points)

(a) They key idea is that the coordinate speed of light is given by

dx

dt
=

c

a(t)
,

so the coordinate distance (in notches) that light can travel between t = 0 and now
(t = t0) is given by

`c =

∫ t0

0

cdt

a(t)
.

The corresponding physical distance is the horizon distance:

`p,horizon(t0) = a(t0)

∫ t0

0

cdt

a(t)
.

Evaluating,

`p,horizon(t0) = bt
2/3
0

∫ t0

0

cdt

bt2/3
= t

2/3
0

[
3ct

1/3
0

]
= 3ct0 .

(b) As stated in part (a), the coordinate distance that light can travel between t = 0
and t = t0 is given by

`c =

∫ t0

0

cdt

a(t)
=

3ct
1/3
0

b
.

Thus, if we are at the origin, at t = 0 the photon must have been at

x0 =
3ct

1/3
0

b
.

(c) The photon starts at x = x0 at t = 0, and then travels in the negative x-direction
at speed c/a(t). Thus, it’s position at time t is given by

x(t) = x0 −
∫ t

0

cdt′

a(t′)
=

3ct
1/3
0

b
− 3ct1/3

b
=

3c

b

(
t
1/3
0 − t1/3

)
.
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(d) Since the coordinate distance between us and the photon is x(t), measured in notches,
the physical distance (in, for example, meters) is just a(t) times x(t). Thus.

`p(t) = a(t)x(t) = 3ct2/3
(
t
1/3
0 − t1/3

)
.

(e) To find the maximum of `p(t), we set the derivative equal to zero:

d`p(t)

dt
=

d

dt

[
3c
(
t2/3t

1/3
0 − t

)]
= 3c

[
2

3

(
t0
t

)1/3

− 1

]
= 0 ,

so (
t0
tmax

)1/3

=
3

2
=⇒ tmax =

(
2

3

)3

t0 =
8

27
t0 .

The maximum distance is then

`p,max = `p(tmax) = 3c

(
2

3

)2

t
2/3
0

[
t
1/3
0 −

(
2

3

)
t
1/3
0

]
= 3c

(
2

3

)2(
1

3

)
t0

=
4

9
ct0 .

PROBLEM 23: DID YOU DO THE READING (2016)? (35 points)

(a) (5 points) The Milky Way has been known since ancient times as a band of light
stretching across the sky. We now recognize the Milky Way as the galaxy of stars
in which we live, with a large collection of stars, including our sun, arranged in a
giant disk. Since the individual stars are mostly too small for our eyes to resolve, we
observe the collective light from these stars, concentrated in the plane of the disk.
The idea that the Milky Way is actually a disk of stars was proposed by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.
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(vi) Edwin Hubble, in 1923.

(b) (5 points) Once it was recognized that we live in a galaxy, it was initially assumed
that ours was the only galaxy. The suggestion that some of the patches of light
known as nebulae might actually be other galaxies like our own was made by

(i) Claudius Ptolemy, in the 2nd century AD.

(ii) Johannes Kepler, in 1610.

(iii) Isaac Newton, in 1695.

(iv) Thomas Wright, in 1750.

(v) Immanuel Kant, in 1755.

(vi) Edwin Hubble, in 1923.

(c) (5 points) The first firm evidence that there is more than one galaxy stemmed from
the ability to observe the Andromeda Nebula with high enough resolution to distin-
guish its individual stars. In particular, the observation of Cepheid variable stars in
Andromeda allowed a distance estimate that placed it well outside the Milky Way.
The observation of Cepheid variable stars in Andromeda was first made by

(i) Johannes Kepler, in 1610.

(ii) Isaac Newton, in 1695.

(iii Thomas Wright, in 1750.

(iv) Immanuel Kant, in 1755.

(v) Henrietta Swan Leavitt and Harlow Shapley in 1915.

(vi) Edwin Hubble, in 1923.

(d) (5 points) The first hint that the universe is filled with radiation with an effective
temperature near 3 K, although not recognized at the time, was an observation of
absorption lines in cyanogen (CN) by Adams and McKellar in 1941. They observed
dark spectral lines which they interpreted as absorption by the cyanogen of light
coming from the star behind the gas cloud. Explain in a few sentences how these ab-
sorption lines can be used to make inferences about the cosmic background radiation
bathing the cyanogen gas cloud.

Answer:

When an atom absorbs a photon, it is excited from its initial state to some
final state, and the energy of the photon must match the energy difference
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betwen the two states. One of the observed cyanogen lines was associated
with a transition starting in the ground state, and two other observed lines
were associated with transitions starting from an excited state. By compar-
ing the intensities of these absorption lines, the astronomers could infer the
relative abundance of ground state and excited cyanogen molecules, which
in turn allowed them to infer the temperature of the gas cloud. They found
a temperature of 2.2 K.

(e) (5 points) As the universe expands, the temperature of the cosmic microwave back-
ground

(i) goes up in proportion to the scale factor a(t).

(ii) stays constant.

(iii) goes down in proportion to 1/a(t).

(iv) goes down in proportion to 1/a2(t).

(f) (5 points) When Hubble measured the value of his constant, he found H−1 ≈ 100

million years, 2 billion years, 10 billion years, or 20 billion years?

(g) (5 points) Explain in a few sentences what is meant by the equivalence principle?

Answer:

Ryden states that the equivalence principle is the fact that the gravitational
mass of any object is equal to its inertial mass. It would also be correct to
say that the graviational mass is proportional to the inertial mass. (If they
are proportional, there is always a value of G which makes them equal.)
The equivalence principle can also be described more generally by saying
that gravity is equivalent to acceleration, so that within a small volume the
effects of gravity can be removed by describing the system in an accelerating
coordinate system.

PROBLEM 24: OBSERVING A DISTANT GALAXY IN A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Suppose that we are living in a matter-dominated flat universe, with a scale factor
given by

a(t) = bt2/3 ,

where b is a constant. The present time is denoted by t0.

(a) (5 points) If we measure time in seconds, distance in meters, and coordinate distances
in notches, what are the units of b?
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Answer:

a(t) would be measured in meters/notch, and t would be measured in sec-

onds. So

[b] =
[a(t)]

[t]2/3
=

m

notch-s2/3
.

(b) (5 points) Suppose that we observe a distant galaxy which is one half of a “Hubble

length” away, which means that the physical distance today is `p = 1
2cH

−1
0 , where c

is the speed of light and H0 is the present value of the Hubble expansion rate. What

is the proper velocity vp ≡ d`p(t)
dt of this galaxy relative to us?

Answer:

By Hubble’s law, the velocity of recession is equal to H0 times the physical

distance, so

vp = H0

[
1

2
cH−1

0

]
=

1

2
c .

A common error in this part was to use

H0 =
ȧ

a
=

2

3

bt
−1/3
0

bt
2/3
0

=
2

3t0

to write

`p =
3

4
ct0 ,

and then to differentiate this expression with respect to t0, finding vp =

3c/4. The problem with this approach is that it assumes that the relation

`p = 1
2cH

−1 holds for all t, so that one can differentiate it to find the

velocity. But an object that is at distance 1
2cH

−1 does not remain at a

distance 1
2cH

−1 as time progresses. It is the coordinate distance `c, and not

the physical distance measured in Hubble lengths, that remains constant

as the universe expands.

(c) (5 points) What is the coordinate distance `c between us and the distant galaxy?

Express your answer in terms of b, t0, and c (but not H0).
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Answer:

We know that `p(t) = a(t)`c, so

`c =
`p(t0)

a(t0)
=

c

2bH0t
2/3
0

.

To eliminate H0, which is not allowed in the answer, we can use

H0 =
1

a(t0)

da(t0)

dt0
=

1

bt
2/3
0

[
2

3
bt
−1/3
0

]
=

2

3t0
.

Inserting the result into the line above,

`c =
3

4

ct
1/3
0

b
.

If you did not answer the previous part, you may still continue with the following parts,
using the symbol `c for the coordinate distance to the galaxy.

(d) (5 points) At what time te was the light that we are now receiving from the galaxy
emitted?

Answer:

We know that the coordinate velocity of light is

dx

dt
=

c

a(t)
=

c

bt2/3
.

We can find te by the requirement that the coordinate distance that light
travels between te and t0 must be equal to `c found in part (c):∫ t0

te

c

bt′2/3
dt′ =

3

4

ct
1/3
0

b
.

Integrating,

3c

b

[
t
1/3
0 − t1/3e

]
=

3

4

ct
1/3
0

b
.

With a little algebra we see

t1/3e =
3

4
t
1/3
0 =⇒ te =

27

64
t0 .
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(e) (5 points) What is the redshift z of the light that we are now receiving from the
distant galaxy?

Answer:

The redshift is related to the scale factor by

1 + z =
a(t0)

a(te)
=

(
t0
te

)2/3

=

(
64

27

)2/3

=
16

9
,

so

z =
7

9
.

(f) (10 points) Consider a light pulse that leaves the distant galaxy at time te, as cal-
culated in part (d), and arrives here at the present time, t0. Calculate the physical
distance rp(t) between the light pulse and us. Find rp(t) as a function of t for all t
between te and t0.

Answer:

We first calculate the coordinate separation rc(t) between the light pulse
and us, as a function of t. At time te it is equal to the value of `c found in
part (c), and from that time onward it is reduced by the coordinate distance
that light can travel between times te and t. Therefore,

rc(t) =
3

4

ct
1/3
0

b
−
∫ t

te

c

b t′2/3
dt′

=
3

4

ct
1/3
0

b
− 3c

b

[
t1/3 − t1/3e

]
=

3

4

ct
1/3
0

b
− 3c

b

[
t1/3 − 3

4
t
1/3
0

]
=

3c

b

[
t
1/3
0 − t1/3

]
.

The physical distance is then

rp(t) = bt2/3 rc(t) = 3c
[
t
1/3
0 t2/3 − t

]
= 3ct

[(
t0
t

)1/3

− 1

]
.
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(g) (5 points) If we send a radio message now to the distant galaxy, at what time tr will
it be received?

Answer:

We calculate the time tr by which a light ray, starting at t0, can travel a
coordinate distance equal to the value we found in part (c):

∫ tr

t0

c

b t′2/3
dt′ = `c =

3

4

ct
1/3
0

b
.

Integrating,

3c

b

[
t1/3r − t1/30

]
=

3

4

ct
1/3
0

b
,

from which we find

t1/3r =
5

4
t
1/3
0 =⇒ tr =

125

64
t0 .
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QUIZ 1

Reformatted to Remove Blank Pages

Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) After telescopes became available, more and more extended objects in
the sky, called nebulae, were discovered, but those were thought as members of our
galaxy. Who is the person who first proposed that some of the nebulae are galaxies
like our own located outside our galaxy?

(i) Isaac Newton

(ii) Immanuel Kant

(iii) Edwin Hubble

(iv) Albert Einstein

(b) (5 points) Before 1923, questions of the nature of the spiral and elliptical nebulae
could not be settled without some reliable method of determining how far away they
are. In 1923, Edwin Hubble was for the first time able to resolve the Andromeda
Nebula (galaxy) into separate stars and estimated the distance to the Andromeda
Nebula. What observational quantity did he measure to estimate the distance?

(i) the radial velocity of individual stars in the Adromeda Nebula

(ii) the radial velocity of the Andromeda Nebula itself

(iii) the periods of variation of a class of stars in the Andromeda Nebula

(iv) the parallax of bright stars in the Adromeda Nebula

— Problem 1 continues on next page. —
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(c) (5 points) In 1917, a year after the completion of Einstein’s general theory of rel-
ativity, looked specifically for a solution that would be homogeneous,
isotropic, and static, and thus was forced to mutilate the equations by introducing
a term, the so-called cosmological constant. In the same year, another solution of
the modified theory was found by the Dutch astronomer . Although this
solution appeared to be static, it had the remarkable property of predicting a red-
shift proportional to the distance. In 1922, the general homogeneous and isotropic
solution of the original Einstein equations was found by the Russian mathemati-
cian , which provides a mathematical background for the most modern
cosmological theories. Which is the right answer to fill in the blanks in turn?

(i) Friedmann — Einstein — de Sitter

(ii) Friedmann — de Sitter — Einstein

(iii) Einstein — Friedmann — de Sitter

(iv) Einstein — de Sitter — Friedmann

(v) de Sitter — Einstein — Friedmann

(vi) de Sitter — Friedmann — Einstein

(d) (5 points) After radio noises with the equivalent temperature of about 3.5◦ K were
detected, Penzias, Wilson, Dicke, Peebles, Roll, and Wilkinson decided to publish a
pair of companion letters in the Astrophysical Journal, in which Penzias and Wilson
would announce their observations, and Dicke, Peebles, Roll, and Wilkinson would
explain the cosmological interpretation. What is the title of the paper written by
Penzias and Wilson?

(i) “A Measurement of Excess Antenna Temperature at 4,080 Mc/s”

(ii) “Cosmic Black-Body Radiation”

(iii) “Origin of the Microwave Radio Background”

(iv) “Three Degrees Above Zero: Bell Labs in the Information Age”

— Problem 1 continues on next page. —
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(e) (5 points) The universe contains different types of particles. Which of the following
statements is NOT true?

(i) A baryon is defined as a particle made of three quarks.

(ii) Electrons and neutrinos are leptons.

(iii) There are three types of neutrinos and they all have zero charge.

(iv) The component of the universe made of ions, atoms, and molecules is generally
referred to as baryonic matter, since only the baryons (protons and neutrons)
contribute significantly to the mass density.

(v) About three-fourths of the baryonic matter in the universe is currently in the
form of helium.

(f) (5 points) If one averages over sufficiently large scales, the universe appears to be
homogeneous and isotropic. How large must the averaging scale be before this ho-
mogeneity and isotropy set in?*

(i) 1000 Mpc. (1 Mpc = 106 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(ii) 100 Mpc.

(iii) 1 Mpc.

(iv) 100 kpc (1 kpc = 1000 pc).

(v) 1 AU (1 AU = 1.496× 1011 m).

— End of Problem 1. —

* This question was a replacement, listed on a separate sheet when the quiz was
administered.
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PROBLEM 2: LIGHT RAYS TRAVELING THROUGH A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Consider a flat, matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Now consider a galaxy G in this universe which at time t1 emits
two photons, with an angular separation θ between their paths, as shown in the diagram:

(a) (10 points) At cosmic time t (for t > t1), what is the physical distance `1,phys(t) of
each of these photons from the galaxy G?

(b) (5 points) If the frequency of the photons was ν1 when they were emitted, what is
their frequency ν(t) at cosmic time t (for t > t1)? ν(t) should be the frequency as it
would be measured by a comoving observer, i.e. an observer at rest with respect to
the matter at the same location.

(c) (10 points) What is the physical distance `2,phys(t) between the two photons at time
t (for t > t1)?

Now consider a different situation, but in the same universe. This time we consider a
photon that travels past the galaxy G, traveling in the x direction, in the x-y plane, as
shown in the diagram below. We are told that the photon crosses the y axis at time t2,
and at that time the photon is a physical distance h from the galaxy.
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(d) (10 points) What is the physical distance `3,phys(t) between the photon and the
galaxy G at arbitrary time t, which might be earlier or later than t2?

(e) (5 points) At time t2, what is the recessional speed d`3,phys(t)/dt of the photon from
the galaxy. Hint: if you are clever, this can be done with very little calculation.

PROBLEM 3: THE STEADY-STATE UNIVERSE THEORY (30 points)

The following problem was Problem 2, Quiz 1, 2000. It was also Problem 2 of the Quiz
1 Review Problems, 2018.

Until the discovery of the cosmic microwave background, the steady state theory
was considered a viable model of the universe. As the name suggests, this theory is
based on the hypothesis that the large-scale properties of the universe do not change
with time. The expansion of the universe was an established fact when the steady-state
theory was invented, but the steady-state theory reconciles the expansion with a steady-
state density of matter by proposing that new matter is created as the universe expands,
so that the matter density does not fall. Like the conventional theory, the steady-state
theory describes a homogeneous, isotropic, expanding universe, so the same comoving
coordinate formulation can be used.

a) (15 points) The steady-state theory proposes that the Hubble constant, like other
cosmological parameters, does not change with time, so H(t) = H0. Find the most
general form for the scale factor function a(t) which is consistent with this hypothesis.

b) (15 points) Suppose that the mass density of the universe is ρ0, which of course does
not change with time. In terms of the general form for a(t) that you found in part
(a), calculate the rate at which new matter must be created for ρ0 to remain constant
as the universe expands. Your answer should have the units of mass per unit volume
per unit time. [If you failed to answer part (a), you will still receive full credit here
if you correctly answer the question for an arbitrary scale factor function a(t).]
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Physics Department
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Prof. Alan Guth

QUIZ 1 FORMULA SHEET

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1
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Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects, a(t)
is the scale factor, and `c is the coordinate distance between the
objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight lines

with speed
dx

dt
=

c

a(t)
.

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
Gρa ,

ρ(t) =
a3(ti)

a3(t)
ρ(ti)

Ω ≡ ρ/ρc , where ρc =
3H2

8πG
.

Flat (k = 0): a(t) ∝ t2/3 , Ω = 1
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PROBLEM 1: DID YOU DO THE READING? (30 points)

(a) (5 points) After telescopes became available, more and more extended objects in
the sky, called nebulae, were discovered, but those were thought as members of our
galaxy. Who is the person who first proposed that some of the nebulae are galaxies
like our own located outside our galaxy?

(i) Isaac Newton

(ii) Immanuel Kant

(iii) Edwin Hubble

(iv) Albert Einstein

(b) (5 points) Before 1923, questions of the nature of the spiral and elliptical nebulae
could not be settled without some reliable method of determining how far away they
are. In 1923, Edwin Hubble was for the first time able to resolve the Andromeda
Nebula (galaxy) into separate stars and estimated the distance to the Andromeda
Nebula. What observational quantity did he measure to estimate the distance?

(i) the radial velocity of individual stars in the Adromeda Nebula

(ii) the radial velocity of the Andromeda Nebula itself

(iii) the periods of variation of a class of stars in the Andromeda Nebula

(iv) the parallax of bright stars in the Adromeda Nebula

[Comment: Hubble used Cepheid variables to estimate the distance to the Andromeda
Nebula (galaxy) with a tight relation between the observed periods of variation of the
Cepheids and their absolute luminosities provided by Henrietta Swan Leavitt and Harlow
Shapley.]

— Problem 1 continues on next page. —
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(c) (5 points) In 1917, a year after the completion of Einstein’s general theory of rel-
ativity, looked specifically for a solution that would be homogeneous,
isotropic, and static, and thus was forced to mutilate the equations by introducing
a term, the so-called cosmological constant. In the same year, another solution of
the modified theory was found by the Dutch astronomer . Although this
solution appeared to be static, it had the remarkable property of predicting a red-
shift proportional to the distance. In 1922, the general homogeneous and isotropic
solution of the original Einstein equations was found by the Russian mathemati-
cian , which provides a mathematical background for the most modern
cosmological theories. Which is the right answer to fill in the blanks in turn?

(i) Friedmann — Einstein — de Sitter

(ii) Friedmann — de Sitter — Einstein

(iii) Einstein — Friedmann — de Sitter

(iv) Einstein — de Sitter — Friedmann

(v) de Sitter — Einstein — Friedmann

(vi) de Sitter — Friedmann — Einstein

(d) (5 points) After radio noises with the equivalent temperature of about 3.5◦ K were
detected, Penzias, Wilson, Dicke, Peebles, Roll, and Wilkinson decided to publish a
pair of companion letters in the Astrophysical Journal, in which Penzias and Wilson
would announce their observations, and Dicke, Peebles, Roll, and Wilkinson would
explain the cosmological interpretation. What is the title of the paper written by
Penzias and Wilson?

(i) “A Measurement of Excess Antenna Temperature at 4,080 Mc/s”

(ii) “Cosmic Black-Body Radiation”

(iii) “Origin of the Microwave Radio Background”

(iv) “Three Degrees Above Zero: Bell Labs in the Information Age”

[Comment: (ii) is the title of the companion letter by Dicke, Peebles, Roll, and Wilkinson;
(iii) is the title of a paper written by Peebles and Dicke in 1966, in which they refuted
a suggestion by Michele Kaufman that the background radiation was emitted by ionized
intergalactic hydrogen; and (iv) is the title of a book written by Jeremy Bernstein.]

— Problem 1 continues on next page. —
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(e) (5 points) The universe contains different types of particles. Which of the following
statements is NOT true?

(i) A baryon is defined as a particle made of three quarks.

(ii) Electrons and neutrinos are leptons.

(iii) There are three types of neutrinos and they all have zero charge.

(iv) The component of the universe made of ions, atoms, and molecules is generally
referred to as baryonic matter, since only the baryons (protons and neutrons)
contribute significantly to the mass density.

(v) About three-fourths of the baryonic matter in the universe is currently in the
form of helium.

[Comment: about three-fourths of the baryonic matter in the universe is currently in the
form of hydrogen.]

(f) (5 points) If one averages over sufficiently large scales, the universe appears to be
homogeneous and isotropic. How large must the averaging scale be before this ho-
mogeneity and isotropy set in?*

(i) 1000 Mpc. (1 Mpc = 106 pc, 1 pc = 3.086× 1016 m = 3.262 light-year).

(ii) 100 Mpc.

(iii) 1 Mpc.

(iv) 100 kpc (1 kpc = 1000 pc).

(v) 1 AU (1 AU = 1.496× 1011 m).

— End of Problem 1. —

* This question was a replacement, listed on a separate sheet when the quiz was
administered.
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PROBLEM 2: LIGHT RAYS TRAVELING THROUGH A MATTER-
DOMINATED FLAT UNIVERSE (40 points)

Consider a flat, matter-dominated universe, with a scale factor given by

a(t) = bt2/3 ,

where b is a constant. Now consider a galaxy G in this universe which at time t1 emits
two photons, with an angular separation θ between their paths, as shown in the diagram:

(a) (10 points) At cosmic time t (for t > t1), what is the physical distance `1,phys(t) of
each of these photons from the galaxy G?

Answer:

The coordinate speed of light is c/a(t), so the coordinate distance traveled is

`1,c(t) =

∫ t

t1

c

a(t′)
dt′

=

(
3c

b

)
t1/3

∣∣∣t
t1

=

(
3c

b

)
t1/3

[
1−

(
t1
t

)1/3
]
.

The physical distance is then

`1,phys(t) = a(t)`1,c(t) = bt2/3`1,c(t)

= 3ct

[
1−

(
t1
t

)1/3
]
.
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(b) (5 points) If the frequency of the photons was ν1 when they were emitted, what is
their frequency ν(t) at cosmic time t (for t > t1)? ν(t) should be the frequency as it
would be measured by a comoving observer, i.e. an observer at rest with respect to
the matter at the same location.

Answer:

The wavelength of a photon is stretched in proportion to the scale factor, so the
frequency is inversely proportional to the scale factor. So

ν(t) =
a(t1)

a(t)
ν1 =

(
t1
t

)2/3

ν1 .

(c) (10 points) What is the physical distance `2,phys(t) between the two photons at time
t (for t > t1)?

Answer:

Since the universe is flat, we can use ordinary Euclidean geometry, as shown in the
diagram:

The coordinate distance between the two photons is then given by

`2,c = 2`1,c sin
θ

2
.

The physical distance is then

`2,phys = 2a(t)`1,c sin
θ

2

= 2bt2/3
(

3c

b

)
t1/3

[
1−

(
t1
t

)1/3
]

sin
θ

2

= 6ct

[
1−

(
t1
t

)1/3
]

sin
θ

2
.



8.286 QUIZ 1 SOLUTIONS, FALL 2018 p. 6

Now consider a different situation, but in the same universe. This time we consider a
photon that travels past the galaxy G, traveling in the x direction, in the x-y plane, as
shown in the diagram below. We are told that the photon crosses the y axis at time t2,
and at that time the photon is a physical distance h from the galaxy.

(d) (10 points) What is the physical distance `3,phys(t) between the photon and the
galaxy G at arbitrary time t, which might be earlier or later than t2?

Answer:

It is important to recognize here that the coordinates shown are comoving coordi-
nates, or map coordinates, so that physical distances are obtained by multiplying by
the scale factor. (If these coordinates represented physical distances from the origin,
then the Hubble expansion would be driving all particles outward, and the photon
trajectory would not be a straight line.) So, if the physical distance between the
photon and the galaxy is equal to h at time t2, then the y coordinate of the photon
is equal to

y =
h

a(t2)
.

The x coordinate is determined by the fact that it vanishes at time t2, and then
moves toward positive values at the coordinate speed of light,

dx

dt
=

c

a(t)
.

Thus,

x(t) =

∫ t

t2

c

bt′2/3
dt′ =

3c

b
t1/3

[
1−

(
t2
t

)1/3
]
.

The coordinate distance from the origin is then given by the Pythagorean theorem,

`3,c(t) =
[
x2(t) + y2(t)

]1/2
,
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so
`3,phys(t) = bt2/3

[
x2(t) + y2(t)

]1/2

=

9c2t2

[
1−

(
t2
t

)1/3
]2

+

(
t

t2

)4/3

h2


1/2

.

(e) (5 points) At time t2, what is the recessional speed d`3,phys(t)/dt of the photon from
the galaxy. Hint: if you are clever, this can be done with very little calculation.

Answer:

Note, first of all, that one cannot blindly assume that the photon obeys Hubble’s law,
since Hubble’s law applies only to the comoving matter in the model universe, which
is undergoing uniform expansion. It does not apply to objects, such as photons,
that are moving relative to the comoving matter. (Motion relative to the comoving
matter is called proper motion.)

The answer can be obtained by simply differentiating the above expression for
`3,phys(t) with respect to t, and then setting t = t2, but there is a shorter way.
If we go back to

`3,phys(t) = a(t)`3,c(t) ,

we note that, unlike the the description of uniform Hubble expansion, in this case
the coordinate distance `3,c depends on time. The coordinate distance between two
pieces of comoving matter (i.e., matter expanding with the universe) does not change
with time, but here we have the distance between a galaxy (at fixed coordinates)
and a photon (which is traveling). However, we can easily see from the diagram that
at time t2, the coordinate distance `3,c(t) is at its minimum, and therefore its time
derivative at t2 must be zero. Therefore,

d`3,phys
dt

∣∣∣∣
t2

= ȧ(t2)`3,c(t2)

=

(
ȧ

a

)
[a`3,c(t2)] = H(t2)`3,phys(t2)

=

(
2

3t2

)
h .

The average grade on this problem was only 2.8/5, or 55%, which was the lowest for
any problem on the quiz. Many students assumed that Hubble’s law applied to the
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photon. This assumption leads to the correct answer at time t2, when the photon
proper velocity is perpendicular to the direction from the photon to the galaxy, but
not at other times. Students who gave the correct answer, but attributed it to
Hubble’s law, were given 4 points out of 5. Another common error was to assert
that the speed of light is always measured as c, so d`3,phys(t)/dt = c. The correct
description of the invariance of the speed of light is to say that any inertial observer
(which includes all comoving observers) will measure the speed of a photon that
passes him as being equal to c. But if the photon is at a different location, then
one has to take into account the expansion of the universe, which is done by basing
all calculations on the principle that the coordinate speed of light is always equal to
c/a(t).

PROBLEM 3: THE STEADY-STATE UNIVERSE THEORY (30 points)

The following problem was Problem 2, Quiz 1, 2000. It was also Problem 2 of the Quiz
1 Review Problems, 2018.

Until the discovery of the cosmic microwave background, the steady state theory
was considered a viable model of the universe. As the name suggests, this theory is
based on the hypothesis that the large-scale properties of the universe do not change
with time. The expansion of the universe was an established fact when the steady-state
theory was invented, but the steady-state theory reconciles the expansion with a steady-
state density of matter by proposing that new matter is created as the universe expands,
so that the matter density does not fall. Like the conventional theory, the steady-state
theory describes a homogeneous, isotropic, expanding universe, so the same comoving
coordinate formulation can be used.

a) (15 points) The steady-state theory proposes that the Hubble constant, like other
cosmological parameters, does not change with time, so H(t) = H0. Find the most
general form for the scale factor function a(t) which is consistent with this hypothesis.

Answer:

The Hubble expansion rate is related to a(t) by

H(t) =
1

a(t)

da

dt
,

so in this case
1

a(t)

da

dt
= H0 ,

which can be rewritten as
da

a
= H0 dt .
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Integrating,

ln a = H0 t+ c ,

where c is a constant of integration. Exponentiating,

a = beH0 t ,

where b = ec is an arbitrary constant.

b) (15 points) Suppose that the mass density of the universe is ρ0, which of course does

not change with time. In terms of the general form for a(t) that you found in part

(a), calculate the rate at which new matter must be created for ρ0 to remain constant

as the universe expands. Your answer should have the units of mass per unit volume

per unit time. [If you failed to answer part (a), you will still receive full credit here

if you correctly answer the question for an arbitrary scale factor function a(t).]

Answer:

Consider a cube of side `c drawn on the comoving coordinate system diagram. The

physical length of each side is then a(t) `c, so the physical volume is

V (t) = a3(t) `3c .

Since the mass density is fixed at ρ = ρ0, the total mass inside this cube at any given

time is given by

M(t) = a3(t) `3c ρ0 .

In the absence of matter creation the total mass within a comoving volume would not

change, so the increase in mass described by the above equation must be attributed

to matter creation. The rate of matter creation per unit time per unit volume is

then given by

Rate =
1

V (t)

dM

dt

=
1

a3(t) `3c
3a2(t)

da

dt
`3c ρ0

=
3

a

da

dt
ρ0

= 3H0 ρ0 .
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You were not asked to insert numbers, but it is worthwhile to consider the numerical
value after the exam, to see what this answer is telling us. Suppose we take H0 = 70
km-sec−1-Mpc−1, and take ρ0 to be the critical density, ρc = 3H2

0/8πG. Then

To put this number into more meaningful terms, note that the mass of a hydrogen
atom is 1.67 × 10−27 kg, and that 1 year = 3.156 × 107 s. The rate of matter
production required for the steady-state universe theory can then be expressed as
roughly one hydrogen atom per cubic meter per billion years! Needless to say, such a
rate of matter production is totally undetectable, so the steady-state theory cannot
be ruled out by the failure to detect matter production.

— End of Problem 3. —
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe October 3, 2018
Prof. Alan Guth

QUIZ 1 FORMULA SHEET

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1
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Scale Factor: `p(t) = a(t)`c ,
where `p(t) is the physical distance between any two objects, a(t)
is the scale factor, and `c is the coordinate distance between the
objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight lines

with speed
dx

dt
=

c

a(t)
.

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
Gρa ,

ρ(t) =
a3(ti)

a3(t)
ρ(ti)

Ω ≡ ρ/ρc , where ρc =
3H2

8πG
.

Flat (k = 0): a(t) ∝ t2/3 , Ω = 1



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe October 28, 2018
Prof. Alan Guth

REVIEW PROBLEMS FOR QUIZ 2

Revised Version*

QUIZ DATE: Monday, November 5, 2018, during the normal class time.

COVERAGE: Lecture Notes 4, 5, and through the section on “Dynamics of a Flat
Radiation-Dominated Universe” of Lecture Notes 6; Problem Sets 4, 5, and 6; Wein-
berg, The First Three Minutes, Chapters 4 – 7; In Ryden’s Introduction to Cosmol-
ogy, we have read Chapters 4, 5, and Sec. 6.1 during this period. These chapters,
however, parallel what we have done or will be doing in lecture, so you should take
them as an aid to learning the lecture material; there will be no questions explicitly
based on these sections from Ryden. But we have also read Chapters 10 (Nucleosyn-
thesis and the Early Universe) and 8 (Dark Matter) in Ryden, and these are relevant
material for the quiz, except for Sec. 10.3 (Deuterium Synthesis). We will return to
deuterium synthesis later in the course. You can also ignore Ryden’s Eqs. (10.11),
(10.12), and (10.13) for now. Chapters 4 and 5 of Weinberg’s book are packed with
numbers; you need not memorize these numbers, but you should be familiar with
their orders of magnitude. We will not take off for the spelling of names, as long as
they are vaguely recognizable. For dates before 1900, it will be sufficient for you to
know when things happened to within 100 years. For dates after 1900, it will be suffi-
cient if you can place events within 10 years. You should expect one 25-point problem
based on the readings, and several calculational problems. One of the problems
on the quiz will be taken verbatim (or at least almost verbatim) from
either the problem sets listed above (extra credit problems included), or
from the starred problems from this set of Review Problems. The starred
problems are the ones that I recommend that you review most carefully: Problems
6, 7, 8, 13, 15, 17, 19, and 21.

PURPOSE: These review problems are not to be handed in, but are being made avail-
able to help you study. They come mainly from quizzes in previous years. In some
cases the number of points assigned to the problem on the quiz is listed — in all
such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the actual
quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2005, 2007, 2009,
2011, 2013, and 2016. The relevant problems from those quizzes have mostly been
incorporated into these review problems, but you still may be interested in looking
at the quizzes, just to see how much material has been included in each quiz. The

* Revised November 2, 2018: Problem 23 refers to a table of integrals, which was not
included in the original version of the review problems.
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coverage of the upcoming quiz will not necessarily match exactly the coverage from
previous years, but I believe that all these review problems would be fair problems
for the upcoming quiz. The coverage for each quiz in recent years is usually described
at the start of the review problems, as I did here. In 2016 we finished Weinberg’s
book by the time of Quiz 2, but otherwise the coverage was the same as this year.

REVIEW SESSION: To help you study for the quiz, Honggeun Kim will hold a review
session, at a time and place to be announced.

FUTURE QUIZ: Quiz 3 will be given on Wednesday, December 5, 2018.

INFORMATION TO BE GIVEN ON QUIZ:

Each quiz in this course will have a section of “useful information” for your reference.
For the second quiz, this useful information will be the following:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.
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KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-

VERSE:

Hubble’s Law: v = Hr ,

where v = recession velocity of a distant object, H = Hubble

expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,

where `p(t) is the physical distance between any two objects, a(t)

is the scale factor, and `c is the coordinate distance between the

objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight

lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.
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SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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PROBLEM 1: DID YOU DO THE READING (2000, 2002)

Parts (a)-(c) of this problem come from Quiz 4, 2000, and parts (d) and (e) come from
Quiz 3, 2002.

(a) (5 points) By what factor does the lepton number per comoving volume of the uni-
verse change between temperatures of kT = 10 MeV and kT = 0.1 MeV? You should
assume the existence of the normal three species of neutrinos for your answer.

(b) (5 points) Measurements of the primordial deuterium abundance would give good
constraints on the baryon density of the universe. However, this abundance is hard
to measure accurately. Which of the following is NOT a reason why this is hard to
do?

(i) The neutron in a deuterium nucleus decays on the time scale of 15 minutes,
so almost none of the primordial deuterium produced in the Big Bang is still
present.

(ii) The deuterium abundance in the Earth’s oceans is biased because, being heavier,
less deuterium than hydrogen would have escaped from the Earth’s surface.

(iii) The deuterium abundance in the Sun is biased because nuclear reactions tend
to destroy it by converting it into helium-3.

(iv) The spectral lines of deuterium are almost identical with those of hydrogen, so
deuterium signatures tend to get washed out in spectra of primordial gas clouds.

(v) The deuterium abundance is so small (a few parts per million) that it can be
easily changed by astrophysical processes other than primordial nucleosynthesis.

(c) (5 points) Give three examples of hadrons.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg posed the
question, “Why was there no systematic search for this [cosmic background] radia-
tion, years before 1965?” In discussing this issue, he contrasted it with the history
of two different elementary particles, each of which were predicted approximately 20
years before they were first detected. Name one of these two elementary particles.
(If you name them both correctly, you will get 3 points extra credit. However, one
right and one wrong will get you 4 points for the question, compared to 6 points for
just naming one particle and getting it right.)

Answer:
2nd Answer (optional):

(e) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three
reasons why the importance of a search for a 3◦K microwave radiation background
was not generally appreciated in the 1950s and early 1960s. Choose those three
reasons from the following list. (2 points for each right answer, circle at most 3.)
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(i) The earliest calculations erroneously predicted a cosmic background tempera-
ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-
ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave
background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,
the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the
early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et
al., had attempted to explain the origin of all complex nuclei by reactions in the
early universe. This program was never very successful, and its credibility was
further undermined as improvements were made in the alternative theory, that
elements are synthesized in stars.

PROBLEM 2: DID YOU DO THE READING (2007)? (24 points)

The following problem was Problem 1 of Quiz 2 in 2007.

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting
a cosmic microwave background with a temperature of 5 K. The paper was based
on a cosmological model that they had developed with George Gamow, in which the
early universe was assumed to have been filled with hot neutrons. As the universe
expanded and cooled the neutrons underwent beta decay into protons, electrons, and
antineutrinos, until at some point the universe cooled enough for light elements to
be synthesized. Alpher and Herman found that to account for the observed present
abundances of light elements, the ratio of photons to nuclear particles must have
been about 109. Although the predicted temperature was very close to the actual
value of 2.7 K, the theory differed from our present theory in two ways. Circle the
two correct statements in the following list. (3 points for each right answer; circle at
most 2.)
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(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now
the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons
and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all
neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is
the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)
took place mainly through collisions with electrons, positrons, neutrinos, and
antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed
to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primordial
composition of the universe in terms of three conserved quantities: electric charge,
baryon number, and lepton number. If electric charge is measured in units of the elec-
tron charge, then all three quantities are integers for which the number density can
be compared with the number density of photons. For each quantity, which choice
most accurately describes the initial ratio of the number density of this quantity to
the number density of photons:

Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1
(iv) ∼ 10−6 (v) could be as high as ∼ 1, but

is assumed to be very small
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(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled The
Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reactions
such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction is
changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through
reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(iii) (3 points) The masses of the neutron and proton are not exactly equal, but
instead

(A) The neutron is more massive than a proton with a rest energy difference of
1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy difference of
1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy difference of
1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy difference of
1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy difference of
1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy difference of
1.293 KeV.
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(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form helium
nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form deuterium
nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium nu-
clei, which mostly survive until the present time, and the other half of the
neutrons remain free.

(D) About half the neutrons present combine with protons to form deuterium
nuclei, which mostly survive until the present time, and the other half of
the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form helium
nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form deuterium
nuclei, which mostly survive until the present time.

PROBLEM 3: DID YOU DO THE READING (2011)? (20 points)

The following problem comes from Quiz 2, 2011.

(a) (8 points) During nucleosynthesis, heavier nuclei form from protons and neutrons
through a series of two particle reactions.

(i) In The First Three Minutes, Weinberg discusses two chains of reactions that,
starting from protons and neutrons, end up with helium, He4. Describe at least
one of these two chains.

(ii) Explain briefly what is the deuterium bottleneck, and what is its role during
nucleosynthesis.

(b) (12 points) In Chapter 4 of The First Three Minutes, Steven Weinberg makes the
following statement regarding the radiation-dominated phase of the early universe:

The time that it takes for the universe to cool from one temperature to another is
proportional to the difference of the inverse squares of these temperatures.

In this part of the problem you will explore more quantitatively this statement.

(i) For a radiation-dominated universe the scale-factor a(t) ∝ t1/2. Find the cosmic
time t as a function of the Hubble expansion rate H.

(ii) The mass density stored in radiation ρr is proportional to the temperature T
to the fourth power: i.e., ρr ' αT 4, for some constant α. For a wide range of
temperatures we can take α ' 4.52 × 10−32 kg ·m−3 · K−4. If the temperature
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is measured in degrees Kelvin (K), then ρr has the standard SI units, [ρr] =
kg ·m−3. Use the Friedmann equation for a flat universe (k = 0) with ρ = ρr
to express the Hubble expansion rate H in terms of the temperature T . You
will need the SI value of the gravitational constant G ' 6.67 × 10−11 N · m2 ·
kg−2. What is the Hubble expansion rate, in inverse seconds, at the start of
nucleosynthesis, when T = Tnucl ' 0.9× 109 K?

(iii) Using the results in (i) and (ii), express the cosmic time t as a function of the
temperature. Your result should agree with Weinberg’s claim above. What is
the cosmic time, in seconds, when T = Tnucl?

PROBLEM 4: DID YOU DO THE READING (2013)? (25 points)

The following problem comes from Quiz 2, 2013.

(a) (6 points) The primary evidence for dark matter in galaxies comes from measuring
their rotation curves, i.e., the orbital velocity v as a function of radius R. If stars
contributed all, or most, of the mass in a galaxy, what would we expect for the
behavior of v(R) at large radii?

(b) (5 points) What is actually found for the behavior of v(R)?

(c) (7 points) An important tool for estimating the mass in a galaxy is the steady-state
virial theorem. What does this theorem state?

(d) (7 points) At the end of Chapter 10, Ryden writes “Thus, the very strong asymmetry
between baryons and antibaryons today and the large number of photons per baryon
are both products of a tiny asymmetry between quarks and anitquarks in the early
universe.” Explain in one or a few sentences how a tiny asymmetry between quarks
and anitquarks in the early universe results in a strong asymmetry between baryons
and antibaryons today.

PROBLEM 5: DID YOU DO THE READING (2016)? (25 points)

(a) (5 points) In Chapter 8 of Barbara Ryden’s Introduction to Cosmology, she estimates
the contribution to Ω from clusters of galaxies as

(i) 0.01 (ii) 0.05 (iii) 0.20 (iv) 0.60 (v) 1.00
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(b) (4 points) One method of estimating the total mass of a cluster of galaxies is based
on the virial theorem. With this method, one estimates the mass by measuring

(i) the radius containing half the luminosity and also the temperature of the X-ray
emitting gas at the center of the galaxy.

(ii) the velocity dispersion perpendicular to the line of sight and also the radius
containing half of the luminosity of the cluster.

(iii) the velocity dispersion along the line of sight and also the radius containing half
of the luminosity of the cluster.

(iv) the velocity dispersion along the line of sight and also the redshift of the cluster.

(v) the velocity dispersion perpendicular to the line of sight and also the redshift of
the cluster.

(c) (4 points) Another method of estimating the total mass of a cluster of galaxies is to
make detailed measurements of the x-rays emitted by the hot intracluster gas.

(i) By assuming that this gas is the dominant component of the mass of the cluster,
the mass of the cluster can be estimated.

(ii) By assuming that the hot gas comprises about a third of the mass of the cluster,
the total mass of the cluster can be estimated.

(iii) By assuming that the gas is heated by stars and supernovae that make up
most of the mass of the cluster, the mass of these stars and supernovae can be
estimated.

(iv) By assuming that the gas is heated by interactions with dark matter, which
dominates the mass of the cluster, the mass of the cluster can be estimated.

(v) By assuming that this gas is in hydrostatic equilibrium, the temperature, mass
density, and even the chemical composition of the cluster can be modeled.
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(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three
reasons why the importance of a search for a 3◦K microwave radiation background
was not generally appreciated in the 1950s and early 1960s. Choose those three
reasons from the following list. (2 points for each right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tempera-
ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-
ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave
background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,
the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the
early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et
al., had attempted to explain the origin of all complex nuclei by reactions in the
early universe. This program was never very successful, and its credibility was
further undermined as improvements were made in the alternative theory, that
elements are synthesized in stars.

(e) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting
a cosmic microwave background with a temperature of 5 K. The paper was based
on a cosmological model that they had developed with George Gamow, in which the
early universe was assumed to have been filled with hot neutrons. As the universe
expanded and cooled the neutrons underwent beta decay into protons, electrons, and
antineutrinos, until at some point the universe cooled enough for light elements to
be synthesized. Alpher and Herman found that to account for the observed present
abundances of light elements, the ratio of photons to nuclear particles must have
been about 109. Although the predicted temperature was very close to the actual
value of 2.7 K, the theory differed from our present theory in two ways. Circle the
two correct statements in the following list. (3 points for each right answer; circle at
most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now
the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons
and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all
neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is
the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)
took place mainly through collisions with electrons, positrons, neutrinos, and
antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed
to have been about 103, not 109 as Alpher and Herman concluded.
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∗PROBLEM 6: EVOLUTION OF AN OPEN UNIVERSE

The following problem was taken from Quiz 2, 1990, where it counted 10 points out of
100.

Consider an open, matter-dominated universe, as described by the evolution equa-
tions on the front of the quiz. Find the time t at which a/

√
κ = 2α.

∗PROBLEM 7: ANTICIPATING A BIG CRUNCH

Suppose that we lived in a closed, matter-dominated universe, as described by the
equations on the front of the quiz. Suppose further that we measured the mass density
parameter Ω to be Ω0 = 2, and we measured the Hubble “constant” to have some value
H0. How much time would we have before our universe ended in a big crunch, at which
time the scale factor a(t) would collapse to 0?

∗PROBLEM 8: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points)

The following problem was Problem 3, Quiz 2, 1998.

The spacetime metric for a homogeneous, isotropic, closed universe is given by the
Robertson-Walker formula:

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where I have taken k = 1. To discuss motion in the radial direction, it is more convenient
to work with an alternative radial coordinate ψ, related to r by

r = sinψ .

Then
dr√

1− r2
= dψ ,

so the metric simplifies to

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
.

(a) (7 points) A light pulse travels on a null trajectory, which means that dτ = 0 for
each segment of the trajectory. Consider a light pulse that moves along a radial line,
so θ = φ = constant. Find an expression for dψ/dt in terms of quantities that appear
in the metric.
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(b) (8 points) Write an expression for the physical horizon distance `phys at time t. You

should leave your answer in the form of a definite integral.

The form of a(t) depends on the content of the universe. If the universe is matter-

dominated (i.e., dominated by nonrelativistic matter), then a(t) is described by the

parametric equations

ct = α(θ − sin θ) ,

a = α(1− cos θ) ,

where

α ≡ 4π

3

Gρa3

c2
.

These equations are identical to those on the front of the exam, except that I have chosen

k = 1.

(c) (10 points) Consider a radial light-ray moving through a matter-dominated closed

universe, as described by the equations above. Find an expression for dψ/dθ, where

θ is the parameter used to describe the evolution.

(d) (5 points) Suppose that a photon leaves the origin of the coordinate system (ψ = 0)

at t = 0. How long will it take for the photon to return to its starting place? Express

your answer as a fraction of the full lifetime of the universe, from big bang to big

crunch.

PROBLEM 9: LENGTHS AND AREAS IN A TWO-DIMENSIONAL MET-

RIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r, θ), has a metric

given by

ds2 = (1 + ar)2 dr2 + r2(1 + br)2 dθ2 ,

where a and b are positive constants. Consider the path in this space which is formed by

starting at the origin, moving along the θ = 0 line to r = r0, then moving at fixed r to
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θ = π/2, and then moving back to the origin at fixed θ. The path is shown below:

a) (10 points) Find the total length of this path.

b) (15 points) Find the area enclosed by this path.

PROBLEM 10: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson–Walker metric on the first page of
the quiz, with k = 1. The questions below all pertain to some fixed time t, so the scale
factor can be written simply as a, dropping its explicit t-dependence.

A small rod has one end at the point (r = h, θ = 0, φ = 0) and the other end at the
point (r = h, θ = ∆θ, φ = 0). Assume that ∆θ � 1.
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(a) Find the physical distance `p from the origin (r = 0) to the first end (h, 0, 0) of the
rod. You may find one of the following integrals useful:∫

dr√
1− r2

= sin−1 r

∫
dr

1− r2
=

1

2
ln

(
1 + r

1− r

)
.

(b) Find the physical length sp of the rod. Express your answer in terms of the scale
factor a, and the coordinates h and ∆θ.

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write an
expression for this angle in terms of the physical distance `p, the physical length sp,
and the scale factor a.

PROBLEM 11: THE GENERAL SPHERICALLY SYMMETRIC METRIC
(20 points)

The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which is
spherically symmetric about a particular point, coordinates can be found so that the
metric has the form

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies between
0 and π, and φ varies from 0 to 2π, where φ = 0 and φ = 2π are identified. Given this
metric, consider the sphere whose outer boundary is defined by r = r0.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical length
of a radial line which extends from the center to the boundary of the sphere.)

(b) Find the physical area of the surface of the sphere.

(c) Find an explicit expression for the volume of the sphere. Be sure to include the
limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by

σ = r2 .

Express the metric in terms of this new variable.
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PROBLEM 12: VOLUMES IN A ROBERTSON-WALKER UNIVERSE (20
points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

ds2 = a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Calculate the volume V (rmax) of the sphere described by

r ≤ rmax .

You should carry out any angular integrations that may be necessary, but you may leave
your answer in the form of a radial integral which is not carried out. Be sure, however,
to clearly indicate the limits of integration.

∗PROBLEM 13: THE SCHWARZSCHILD METRIC (25 points)

The follow problem was Problem 4, Quiz 3, 1992:

The space outside a spherically symmetric mass M is described by the Schwarzschild
metric, given at the front of the exam. Two observers, designated A and B, are located
along the same radial line, with values of the coordinate r given by rA and rB , respectively,
with rA < rB . You should assume that both observers lie outside the Schwarzschild
horizon.

a) (5 points) Write down the expression for the Schwarzschild horizon radius RS, ex-
pressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave the
answer to this part in the form of an integral that you do not evaluate— but be sure
to clearly indicate the limits of integration.

c) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation ∆τA. What will be the coordinate time separation ∆tA
between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B receives
these pulses, and measures the time separation on his own clock. What is the time
interval ∆τB measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static black
hole, so the Schwarzschild metric is valid for all r. Now suppose that one considers
the case in which observer A lies on the Schwarzschild horizon, so rA ≡ RS. Is the
proper distance between A and B finite for this case? Does the time interval of the
pulses received by B, ∆τB , diverge in this case?
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PROBLEM 14: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordinates by
the metric

ds2 = dr2 + r2 dθ2 .

(a) Suppose that r(λ) and θ(λ) describe a geodesic in this space, where the parameter
λ is the arc length measured along the curve. Use the general formula on the front
of the exam to obtain explicit differential equations which r(λ) and θ(λ) must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

x = r cos θ ,

y = r sin θ .

Use your answer to (a) to show that the line y = 1 is a geodesic curve.

∗PROBLEM 15: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30
points)

(a) (8 points) Consider first a two-dimensional space with coordinates r and θ. The
metric is given by

ds2 = dr2 + r2dθ2 .

Consider the curve described by

r(θ) = (1 + ε cos2 θ) r0 ,

where ε and r0 are constants, and θ runs from θ1 to θ2. Write an expression, in the
form of a definite integral, for the length S of this curve.

(b) (5 points) Now consider a two-dimensional space with the same two coordinates r
and θ, but this time the metric will be

ds2 =
(

1 +
r

a

)
dr2 + r2 dθ2 ,

where a is a constant. θ is a periodic (angular) variable, with a range of 0 to 2π, with
2π identified with 0. What is the length R of the path from the origin (r = 0) to
the point r = r0, θ = 0, along the path for which θ = 0 everywhere along the path?
You can leave your answer in the form of a definite integral. (Be sure, however, to
specify the limits of integration.)
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(c) (7 points) For the space described in part (b), what is the total area contained within

the region r < r0. Again you can leave your answer in the form of a definite integral,

making sure to specify the limits of integration.

(d) (10 points) Again for the space described in part (b), consider a geodesic described

by the usual geodesic equation,

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds
.

The geodesic is described by functions r(s) and θ(s), where s is the arc length along

the curve. Write explicitly both (i.e., for i=1=r and i=2=θ) geodesic equations.

PROBLEM 16: GEODESICS ON THE SURFACE OF A SPHERE

In this problem we will test the geodesic equation by computing the geodesic curves

on the surface of a sphere. We will describe the sphere as in Lecture Notes 5, with metric

given by

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
.

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized by

θ = π/2 and φ = ψ, where ψ is a parameter which runs from 0 to 2π. Show that if

the equator is rotated by an angle α about the x-axis, then the equations become:

cos θ = sinψ sinα

tanφ = tanψ cosα .

(b) Using the generic form of the geodesic equation on the front of the exam, derive the

differential equation which describes geodesics in this space.

(c) Show that the expressions in (a) satisfy the differential equation for the geodesic.

Hint: The algebra on this can be messy, but I found things were reasonably simple

if I wrote the derivatives in the following way:

dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
,

dφ

dψ
=

cosα

1− sin2 ψ sin2 α
.
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∗PROBLEM 17: GEODESICS IN A CLOSED UNIVERSE

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points plus 5
points extra credit.

Consider the case of closed Robertson-Walker universe. Taking k = 1, the spacetime
metric can be written in the form

ds2 = −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

We will assume that this metric is given, and that a(t) has been specified. While galaxies
are approximately stationary in the comoving coordinate system described by this metric,
we can still consider an object that moves in this system. In particular, in this problem
we will consider an object that is moving in the radial direction (r-direction), under the
influence of no forces other than gravity. Hence the object will travel on a geodesic.

(a) (7 points) Express dτ/dt in terms of dr/dt.

(b) (3 points) Express dt/dτ in terms of dr/dt.

(c) (10 points) If the object travels on a trajectory given by the function rp(t) between
some time t1 and some later time t2, write an integral which gives the total amount
of time that a clock attached to the object would record for this journey.

(d) (10 points) During a time interval dt, the object will move a coordinate distance

dr =
dr

dt
dt .

Let d` denote the physical distance that the object moves during this time. By
“physical distance,” I mean the distance that would be measured by a comoving ob-
server (an observer stationary with respect to the coordinate system) who is located
at the same point. The quantity d`/dt can be regarded as the physical speed vphys

of the object, since it is the speed that would be measured by a comoving observer.
Write an expression for vphys as a function of dr/dt and r.

(e) (10 points) Using the formulas at the front of the exam, derive the geodesic equation
of motion for the coordinate r of the object. Specifically, you should derive an
equation of the form

d

dτ

[
A
dr

dτ

]
= B

(
dt

dτ

)2

+ C

(
dr

dτ

)2

+D

(
dθ

dτ

)2

+ E

(
dφ

dτ

)2

,

where A, B, C, D, and E are functions of the coordinates, some of which might be
zero.

(f) (5 points EXTRA CREDIT) On Problem 1 of Problem Set 6 we learned that in a
flat Robertson-Walker metric, the relativistically defined momentum of a particle,

p =
mvphys√
1− v2

phys

c2

,

falls off as 1/a(t). Use the geodesic equation derived in part (e) to show that the
same is true in a closed universe.
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PROBLEM 18: A TWO-DIMENSIONAL CURVED SPACE (40 points)

The following problem was Problem 3, Quiz 2, 2002.

Consider a two-dimensional curved space described by polar
coordinates u and θ, where 0 ≤ u ≤ a and 0 ≤ θ ≤ 2π, and
θ = 2π is as usual identified with θ = 0. The metric is given by

ds2 =
a du2

4u(a− u)
+ udθ2 .

A diagram of the space is shown at the right, but you should of
course keep in mind that the diagram does not accurately reflect
the distances defined by the metric.

(a) (6 points) Find the radius R of the space, defined as the
length of a radial (i.e., θ = constant) line. You may express
your answer as a definite integral, which you need not eval-
uate. Be sure, however, to specify the limits of integration.

(b) (6 points) Find the circumference S of the space, defined as
the length of the boundary of the space at u = a.

(c) (7 points) Consider an annular region as shown, consisting
of all points with a u-coordinate in the range u0 ≤ u ≤
u0 + du. Find the physical area dA of this region, to first
order in du.

(d) (3 points) Using your answer to part (c), write an expression for the total area of
the space.
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(e) (10 points) Consider a geodesic curve in this space, described by the functions u(s)
and θ(s), where the parameter s is chosen to be the arc length along the curve. Find
the geodesic equation for u(s), which should have the form

d

ds

[
F (u, θ)

du

ds

]
= . . . ,

where F (u, θ) is a function that you will find. (Note that by writing F as a function
of u and θ, we are saying that it could depend on either or both of them, but we are
not saying that it necessarily depends on them.) You need not simplify the left-hand
side of the equation.

(f) (8 points) Similarly, find the geodesic equation for θ(s), which should have the form

d

ds

[
G(u, θ)

dθ

ds

]
= . . . ,

where G(u, θ) is a function that you will find. Again, you need not simplify the
left-hand side of the equation.

∗PROBLEM 19: ROTATING FRAMES OF REFERENCE (35 points)

The following problem was Problem 3, Quiz 2, 2004.

In this problem we will use the formalism of general relativity and geodesics to derive
the relativistic description of a rotating frame of reference.

The problem will concern the consequences of the metric

ds2 = −c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)

2
+ dz2

]
, (P19.1)

which corresponds to a coordinate system rotating about the z-axis, where φ is the
azimuthal angle around the z-axis. The coordinates have the usual range for cylindrical
coordinates: −∞ < t <∞, 0 ≤ r <∞, −∞ < z <∞, and 0 ≤ φ < 2π, where φ = 2π is
identified with φ = 0.

EXTRA INFORMATION

To work the problem, you do not need to know anything about where this metric
came from. However, it might (or might not!) help your intuition to know that
Eq. (P19.1) was obtained by starting with a Minkowski metric in cylindrical
coordinates t̄ , r̄, φ̄, and z̄,

c2 dτ2 = c2 dt̄ 2 −
[
dr̄2 + r̄2 dφ̄2 + dz̄2

]
,

and then introducing new coordinates t, r, φ, and z that are related by

t̄ = t, r̄ = r, φ̄ = φ+ ωt, z̄ = z ,

so dt̄ = dt, dr̄ = dr, dφ̄ = dφ+ ω dt, and dz̄ = dz.
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(a) (8 points) The metric can be written in matrix form by using the standard definition

ds2 = −c2 dτ2 ≡ gµν dxµ dxν ,

where x0 ≡ t, x1 ≡ r, x2 ≡ φ, and x3 ≡ z. Then, for example, g11 (which can also be
called grr) is equal to 1. Find explicit expressions to complete the list of the nonzero
entries in the matrix gµν :

g11 ≡ grr = 1

g00 ≡ gtt = ?

g20 ≡ g02 ≡ gφt ≡ gtφ = ?

g22 ≡ gφφ = ?

g33 ≡ gzz = ?

(P19.2)

If you cannot answer part (a), you can introduce unspecified functions f1(r), f2(r), f3(r),
and f4(r), with

g11 ≡ grr = 1

g00 ≡ gtt = f1(r)

g20 ≡ g02 ≡ gφt ≡ gtφ = f1(r)

g22 ≡ gφφ = f3(r)

g33 ≡ gzz = f4(r) ,

(P19.3)

and you can then express your answers to the subsequent parts in terms of these unspec-
ified functions.

(b) (10 points) Using the geodesic equations from the front of the quiz,

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,

explicitly write the equation that results when the free index µ is equal to 1, corre-
sponding to the coordinate r.

(c) (7 points) Explicitly write the equation that results when the free index µ is equal
to 2, corresponding to the coordinate φ.

(d) (10 points) Use the metric to find an expression for dt/dτ in terms of dr/dt, dφ/dt,
and dz/dt. The expression may also depend on the constants c and ω. Be sure to
note that your answer should depend on the derivatives of t, φ, and z with respect
to t, not τ . (Hint: first find an expression for dτ/dt, in terms of the quantities
indicated, and then ask yourself how this result can be used to find dt/dτ .)
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PROBLEM 20: THE STABILITY OF SCHWARZSCHILD ORBITS (30
points)

This problem was Problem 4, Quiz 2 in 2007. I have modified the reference to the
homework problem to correspond to the current (2016) context, where it is Problem 3 of
Problem Set 6. In 2007 it had also been a homework problem prior to the quiz.

This problem is an elaboration of the Problem 3 of Problem Set 6, for which both
the statement and the solution are reproduced at the end of this quiz. This material is
reproduced for your reference, but you should be aware that the solution to the present
problem has important differences. You can copy from this material, but to allow the
grader to assess your understanding, you are expected to present a logical, self-contained
answer to this question.

In the solution to that homework problem, it was stated that further analysis of the
orbits in a Schwarzschild geometry shows that the smallest stable circular orbit occurs
for r = 3RS . Circular orbits are possible for 3

2RS < r < 3RS , but they are not stable.
In this problem we will explore the calculations behind this statement.

We will consider a body which undergoes small oscillations about a circular orbit at
r(t) = r0, θ = π/2, where r0 is a constant. The coordinate θ will therefore be fixed, but
all the other coordinates will vary as the body follows its orbit.

(a) (12 points) The first step, since r(τ) will not be a constant in this solution, will be
to derive the equation of motion for r(τ). That is, for the Schwarzschild metric

ds2 = −c2dτ2 = −h(r)c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 , (P20.1)

where

h(r) ≡ 1− RS
r

,

work out the explicit form of the geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (P20.2)

for the case µ = r. You should use this result to find an explicit expression for

d2r

dτ2
.

You may allow your answer to contain h(r), its derivative h′(r) with respect to r,
and the derivative with respect to τ of any coordinate, including dt/dτ .
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(b) (6 points) It is useful to consider r and φ to be the independent variables, while
treating t as a dependent variable. Find an expression for(

dt

dτ

)2

in terms of r, dr/dτ , dφ/dτ , h(r), and c. Use this equation to simplify the expression
for d2r/dτ2 obtained in part (a). The goal is to obtain an expression of the form

d2r

dτ2
= f0(r) + f1(r)

(
dφ

dτ

)2

. (P20.3)

where the functions f0(r) and f1(r) might depend on RS or c, and might be positive,
negative, or zero. Note that the intermediate steps in the calculation involve a term
proportional to (dr/dτ)2, but the net coefficient for this term vanishes.

(c) (7 points) To understand the orbit we will also need the equation of motion for φ.
Evaluate the geodesic equation (P20.2) for µ = φ, and write the result in terms of
the quantity L, defined by

L ≡ r2 dφ

dτ
. (P20.4)

(d) (5 points) Finally, we come to the question of stability. Substituting Eq. (P20.4)
into Eq. (P20.3), the equation of motion for r can be written as

d2r

dτ2
= f0(r) + f1(r)

L2

r4
.

Now consider a small perturbation about the circular orbit at r = r0, and write an
equation that determines the stability of the orbit. (That is, if some external force
gives the orbiting body a small kick in the radial direction, how can you determine
whether the perturbation will lead to stable oscillations, or whether it will start to
grow?) You should express the stability requirement in terms of the unspecified
functions f0(r) and f1(r). You are NOT asked to carry out the algebra of inserting
the explicit forms that you have found for these functions.

∗PROBLEM 21: PRESSURE AND ENERGY DENSITY OF MYSTERI-
OUS STUFF (25 points)

The following problem was Problem 3, Quiz 3, 2002.

In Lecture Notes 6, with further calculations in Problem 4 of Problem Set 6, a
thought experiment involving a piston was used to show that p = 1

3ρc
2 for radiation. In

this problem you will apply the same technique to calculate the pressure of mysterious
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stuff, which has the property that the energy density falls off in proportion to 1/
√
V as

the volume V is increased.

If the initial energy density of the mysterious stuff is u0 = ρ0c
2, then the initial

configuration of the piston can be drawn as

The piston is then pulled outward, so that its initial volume V is increased to V + ∆V .
You may consider ∆V to be infinitesimal, so ∆V 2 can be neglected.

(a) (15 points) Using the fact that the energy density of mysterious stuff falls off as
1/
√
V , find the amount ∆U by which the energy inside the piston changes when the

volume is enlarged by ∆V . Define ∆U to be positive if the energy increases.

(b) (5 points) If the (unknown) pressure of the mysterious stuff is called p, how much
work ∆W is done by the agent that pulls out the piston?

(c) (5 points) Use your results from (a) and (b) to express the pressure p of the mysterious
stuff in terms of its energy density u. (If you did not answer parts (a) and/or (b),
explain as best you can how you would determine the pressure if you knew the
answers to these two questions.)

PROBLEM 22: VOLUME OF A CLOSED THREE-DIMENSIONAL SPACE
(15 points)

This problem is a generalization of Problem 2 of Problem Set 5.

Recall that the spatial part of the metric for a closed universe can be written as

ds2 = R2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)]
.
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In this problem we will consider a more general metric, which also describes a closed

three-dimensional space, but one that is not homogeneous. The metric will be given by

ds2 = R2
[
dψ2 + f2(ψ)

(
dθ2 + sin2 θdφ2

)]
,

where f(ψ) is some unspecified function. The coordinates θ and φ have the usual range,

0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π, and ψ varies in the range 0 ≤ ψ ≤ π.

Write an integral expression for the volume of this space. The integral should be

over a single variable only. Hint: as in Problem 2 of Problem Set 5, you can break the

volume up into spherical shells of infinitesimal thickness, extending from ψ to ψ + dψ:
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PROBLEM 23: GRAVITATIONAL BENDING OF LIGHT (30 points)

When a light ray passes by a massive object, general relativity predicts that it will
be bent. Since most celestial objects are nearly spherical, we can use the Schwarzschild
metric to calculate the bending. Furthermore, since we are usually interested in objects
that are not black holes or anywhere nearly as dense, we can obtain an accurate answer
by carrying out the calculation in a weak-field approximation. For a photon that grazes
the Sun, for example, the value of RSch/R�, the Schwarzschild radius over the radius of
the Sun, is about 4× 10−6.

Starting with the Schwarzschild metric,

ds2 = −
(

1− RSch

r

)
c2dt2 +

(
1− RSch

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) , (P23.1)

where RSch = 2GM/c2, we can expand in powers of RSch/r and keep only the first order
terms:

ds2 = −
(

1− RSch

r

)
c2dt2 +

(
1 +

RSch

r

)
dr2 + r2(dθ2 + sin2 θ dφ2) . (P23.2)

For this problem it is useful to switch to Cartesian-like coordinates, defined in terms of
r, θ, and φ by the usual Cartesian formulas,

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

(P23.3)

General relativity allows us to make any coordinate redefinitions that we might want, as
long as we calculate the metric in terms of the new coordinates. It is useful to continue
to use the quantity r, but now it will be thought of as a function of the coordinates x, y,
and z:

r = (x2 + y2 + z2)1/2 . (P23.4)

The metric can then be rewritten as the Minkowski metric of special relativity, plus small
corrections:

ds2 = −c2dt2 + dx2 + dy2 + dz2 +
RSch

r
c2dt2 +

RSch

r
(dr)2 , (P23.5)

where from Eq. (4) one can see that

dr =
1

r
(xdx+ y dy + z dz) . (P23.6)

(a) (6 points) For the metric as approximated by Eqs. (P23.5) and (P23.6), write the
expressions for gtt, gxx, and gxy.



8.286 QUIZ 2 REVIEW PROBLEMS, FALL 2018 p. 32

The trajectory of the photon is lightlike, so we cannot use τ to parameterize the
trajectory, because proper time intervals along a lightlike trajectory are zero. Nonetheless,
it can be shown that one can use an “affine parameter” λ, for which the geodesic equation
has the usual form:

d

dλ

{
gµν

dxν

dλ

}
=

1

2
[∂µgστ ]

dxσ

dλ

dxτ

dλ
. (P23.7)

To obtain an answer that is accurate to first order in G, we begin by considering the
unperturbed photon trajectory — the trajectory it would have if G were taken as zero, so
RSch = 2GM/c2 = 0. This would be a straight line in the (x, y, z) coordinates, as shown
in the diagram below:

Here b is called the impact parameter. We can parameterize this path by

x(λ) = λ , y(λ) = b , z(λ) = 0 , t(λ) = λ/c . (P23.8)

We will calculate the deflection (to first order in G) by assuming that the photon path is
accurately described by Eq. (P23.8), and we will calculate the y-velocity that the photon
acquires due to the gravitational attraction of the Sun.

(b) (9 points) With the goal of calculating d2y/dλ2, we evaluate the geodesic equation
for µ = y. Start here by evaluating the left-hand side of Eq. (P23.7) for µ = y, to
first order in G. Expand the derivative with respect to λ using the product rule,
working out explicitly the derivatives of the relevant gµν with respect to λ. In parts
(b) and (c), you may assume that x(λ), y(λ), z(λ), and t(λ), as well as dx/dλ,
dy/dλ, dz/dλ, and dt/dλ, are all given to sufficient accuracy by Eq. (P23.8) and its
derivatives with respect to λ. (Be careful: it is likely that there are more terms than
you will at first notice.)

(c) (9 points) Evaluate the right-hand side of Eq. (P23.7) for µ = y, to first order in G.
Carry out all derivatives explicitly. (It always pays to be careful.)

(d) (2 points) Use your answers to parts (c) and (d) to find an equation for d2y/dλ2.

(e) (4 points) If the photon starts out on the unperturbed trajectory, its initial value of
dy/dλ will be zero. The final value of dy/dλ will then be

dy

dλ

∣∣∣∣
final

=

∫ ∞
−∞

d2y

dλ2
dλ . (P23.9)

Use this fact to express the deflection angle α, to first order in G, as an explicit
integral. You need not carry out the integral, but you may wish to use the table of
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integrals given below to carry it out so that you can check your answer. The correct
final answer is

α =
4GM

c2b .
(P23.10)

TABLE OF INTEGRALS:∫ ∞
−∞

1

(x2 + b2)
dx =

π

b

∫ ∞
−∞

1

(x2 + b2)3/2
dx =

2

b2

∫ ∞
−∞

1

(x2 + b2)2
dx =

π

2b3∫ ∞
−∞

x2

(x2 + b2)2
dx =

π

2b

∫ ∞
−∞

x2

(x2 + b2)5/2
dx =

2

3b2

∫ ∞
−∞

x2

(x2 + b2)3
dx =

π

8b3
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING?

(a) This is a total trick question. Lepton number is, of course, conserved, so the factor

is just 1. See Weinberg chapter 4, pages 91-4.

(b) The correct answer is (i). The others are all real reasons why it’s hard to measure,

although Weinberg’s book emphasizes reason (v) a bit more than modern astrophysi-

cists do: astrophysicists have been looking for other ways that deuterium might be

produced, but no significant mechanism has been found. See Weinberg chapter 5,

pages 114-7.

(c) The most obvious answers would be proton, neutron, and pi meson. However, there

are many other possibilities, including many that were not mentioned by Weinberg.

See Weinberg chapter 7, pages 136-8.

(d) The correct answers were the neutrino and the antiproton. The neutrino was first

hypothesized by Wolfgang Pauli in 1932 (in order to explain the kinematics of beta

decay), and first detected in the 1950s. After the positron was discovered in 1932,

the antiproton was thought likely to exist, and the Bevatron in Berkeley was built

to look for antiprotons. It made the first detection in the 1950s.

(e) The correct answers were (ii), (v) and (vi). The others were incorrect for the fol-

lowing reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman in 1948,

was 5 degrees, not 0.1 degrees.

(iii) Weinberg quotes his experimental colleagues as saying that the 3◦K radiation

could have been observed “long before 1965, probably in the mid-1950s and per-

haps even in the mid-1940s.” To Weinberg, however, the historically interesting

question is not when the radiation could have been observed, but why radio

astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either the

steady state model or the big bang model, as indicated by the sentence in item

(v) which is a direct quote from the book: “It was extraordinarily difficult for

physicists to take seriously any theory of the early universe”.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 35

PROBLEM 2: DID YOU DO THE READING? (24 points)

(a) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting

a cosmic microwave background with a temperature of 5 K. The paper was based

on a cosmological model that they had developed with George Gamow, in which the

early universe was assumed to have been filled with hot neutrons. As the universe

expanded and cooled the neutrons underwent beta decay into protons, electrons, and

antineutrinos, until at some point the universe cooled enough for light elements to

be synthesized. Alpher and Herman found that to account for the observed present

abundances of light elements, the ratio of photons to nuclear particles must have

been about 109. Although the predicted temperature was very close to the actual

value of 2.7 K, the theory differed from our present theory in two ways. Circle the

two correct statements in the following list. (3 points for each right answer; circle at

most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now

the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons

and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all

neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is

the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)

took place mainly through collisions with electrons, positrons, neutrinos, and

antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed

to have been about 103, not 109 as Alpher and Herman concluded.

(b) (6 points) In Weinberg’s “Recipe for a Hot Universe,” he described the primordial

composition of the universe in terms of three conserved quantities: electric charge,

baryon number, and lepton number. If electric charge is measured in units of the elec-

tron charge, then all three quantities are integers for which the number density can

be compared with the number density of photons. For each quantity, which choice

most accurately describes the initial ratio of the number density of this quantity to

the number density of photons:
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Electric Charge: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1

(iv) ∼ 10−6 (v) either zero or negligible

Baryon Number: (i) ∼ 10−20 (ii) ∼ 10−9 (iii) ∼ 10−6

(iv) ∼ 1 (v) anywhere from 10−5 to 1

Lepton Number: (i) ∼ 109 (ii) ∼ 1000 (iii) ∼ 1

(iv) ∼ 10−6 (v) could be as high as ∼ 1, but
is assumed to be very small

(c) (12 points) The figure below comes from Weinberg’s Chapter 5, and is labeled The
Shifting Neutron-Proton Balance.

(i) (3 points) During the period labeled “thermal equilibrium,” the neutron fraction
is changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-
trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into through reactions
such as
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antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through

reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.

(ii) (3 points) During the period labeled “neutron decay,” the neutron fraction is

changing because (choose one):

(A) The neutron is unstable, and decays into a proton, electron, and antineu-

trino with a lifetime of about 1 second.

(B) The neutron is unstable, and decays into a proton, electron, and antineu-

trino with a lifetime of about 15 seconds.

(C) The neutron is unstable, and decays into a proton, electron, and antineu-

trino with a lifetime of about 15 minutes.

(D) Neutrons and protons can be converted from one into the other through

reactions such as

antineutrino + proton←→ electron + neutron
neutrino + neutron←→ positron + proton.

(E) Neutrons and protons can be converted from one into the other through

reactions such as

antineutrino + proton←→ positron + neutron
neutrino + neutron←→ electron + proton.

(F) Neutrons and protons can be created and destroyed by reactions such as

proton + neutrino←→ positron + antineutrino
neutron + antineutrino←→ electron + positron.
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(iii) (3 points) The masses of the neutron and proton are not exactly equal, but

instead

(A) The neutron is more massive than a proton with a rest energy difference of

1.293 GeV (1 GeV = 109 eV).

(B) The neutron is more massive than a proton with a rest energy difference of

1.293 MeV (1 MeV = 106 eV).

(C) The neutron is more massive than a proton with a rest energy difference of

1.293 KeV (1 KeV = 103 eV).

(D) The proton is more massive than a neutron with a rest energy difference of

1.293 GeV.

(E) The proton is more massive than a neutron with a rest energy difference of

1.293 MeV.

(F) The proton is more massive than a neutron with a rest energy difference of

1.293 KeV.

(iv) (3 points) During the period labeled “era of nucleosynthesis,” (choose one:)

(A) Essentially all the neutrons present combine with protons to form helium

nuclei, which mostly survive until the present time.

(B) Essentially all the neutrons present combine with protons to form deuterium

nuclei, which mostly survive until the present time.

(C) About half the neutrons present combine with protons to form helium nu-

clei, which mostly survive until the present time, and the other half of the

neutrons remain free.

(D) About half the neutrons present combine with protons to form deuterium

nuclei, which mostly survive until the present time, and the other half of

the neutrons remain free.

(E) Essentially all the protons present combine with neutrons to form helium

nuclei, which mostly survive until the present time.

(F) Essentially all the protons present combine with neutrons to form deuterium

nuclei, which mostly survive until the present time.
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PROBLEM 3: DID YOU DO THE READING? (20 points)†

(a) (8 points)

(i) (4 points) We will use the notation XA to indicate a nucleus,* where X is
the symbol for the element which indicates the number of protons, while A
is the mass number, namely the total number of protons and neutrons. With
this notation H1, H2, H3, He3 and He4 stand for hydrogen, deuterium, tritium,
helium-3 and helium-4 nuclei, respectively. Steven Weinberg, in The First Three
Minutes, chapter V, page 108, describes two chains of reactions that produce
helium, starting from protons and neutrons. They can be written as:

p+ n→ H2 + γ H2 + n→ H3 + γ H3 + p→ He4 + γ,

p+ n→ H2 + γ H2 + p→ He3 + γ He3 + n→ He4 + γ.

These are the two examples given by Weinberg. However, different chains of
two particle reactions can take place (in general with different probabilities).
For example:

p+ n→ H2 + γ H2 +H2 → He4 + γ,

p+ n→ H2 + γ H2 + n→ H3 + γ H3 +H2 → He4 + n,

p+ n→ H2 + γ H2 + p→ He3 + γ He3 +H2 → He4 + p,

...

Students who described chains different from those of Weinberg, but that can
still take place, got full credit for this part. Also, notice that photons in the
reactions above carry the additional energy released. However, since the main
point was to describe the nuclear reactions, students who didn’t include the
photons still received full credit.

(ii) (4 points) The deuterium bottleneck is discussed by Weinberg in The First Three
Minutes, chapter V, pages 109-110. The key point is that from part (i) it should
be clear that deuterium (H2) plays a crucial role in nucleosynthesis, since it is the
starting point for all the chains. However, the deuterium nucleus is extremely
loosely bound compared to H3, He3, or especially He4. So, there will be a

* Notice that some students talked about atoms, while we are talking about nuclei
formation. During nucleosynthesis the temperature is way too high to allow electrons
and nuclei to bind together to form atoms. This happens much later, in the process
called recombination.
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range of temperatures which are low enough for H3, He3, and He4 nuclei to be
bound, but too high to allow the deuterium nucleus to be stable. This is the
temperature range where the deuterium bottleneck is in action: even if H3, He3,
and He4 nuclei could in principle be stable at those temperatures, they do not
form because deuterium, which is the starting point for their formation, cannot
be formed yet. Nucleosynthesis cannot proceed at a significant rate until the
temperature is low enough so that deuterium nuclei are stable; at this point the
deuterium bottleneck has been passed.

(b) (12 points)

(i) (3 points) If we take a(t) = bt1/2, for some constant b, we get for the Hubble
expansion rate:

H =
ȧ

a
=

1

2t
=⇒ t =

1

2H
.

(ii) (6 points) By using the Friedmann equation with k = 0 and ρ = ρr = αT 4, we
find:

H2 =
8π

3
Gρr =

8π

3
GαT 4 =⇒ H = T 2

√
8π

3
Gα .

If we substitute the given numerical values G ' 6.67× 10−11 N ·m2 · kg−2 and
α ' 4.52× 10−32 kg ·m−3 ·K−4 we get:

H ' T 2 × 5.03× 10−21 s−1 ·K−2 .

Notice that the units correctly combine to give H in units of s−1 if the temper-
ature is expressed in degrees Kelvin (K). In detail, we see:

[Gα]1/2 = (N ·m2 · kg−2 · kg ·m−3 ·K−4)1/2 = s−1 ·K−2 ,

where we used the fact that 1 N = 1 kg ·m · s−2. At T = Tnucl ' 0.9× 109K we
get:

H ' 4.07× 10−3s−1.

(iii) (3 points) Using the results in parts (i) and (ii), we get

t =
1

2H
'
(

9.95× 1019

T 2

)
s ·K2 .
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To good accuracy, the numerator in the expression above can be rounded to
1020. The above equation agrees with Weinberg’s claim that, for a radiation
dominated universe, time is proportional to the inverse square of the tempera-
ture. In particular for T = Tnucl we get:

tnucl ' 123 s ≈ 2 min.

†Solution written by Daniele Bertolini.

PROBLEM 4: DID YOU DO THE READING? (25 points)

(a) (6 points) The primary evidence for dark matter in galaxies comes from measuring
their rotation curves, i.e., the orbital velocity v as a function of radius R. If stars
contributed all, or most, of the mass in a galaxy, what would we expect for the
behavior of v(R) at large radii?

Answer: If stars contributed most of the mass, then at large radii the mass would
appear to be concentrated as a spherical lump at the center, and the orbits of the
stars would be “Keplerian,” i.e., orbits in a 1/r2 gravitational field. Then ~F = m~a
implies that

1

R2
∝ v2

R
=⇒ v ∝ 1√

R
.

(b) (5 points) What is actually found for the behavior of v(R)?

Answer: v(R) looks nearly flat at large radii.

(c) (7 points) An important tool for estimating the mass in a galaxy is the steady-state
virial theorem. What does this theorem state?

Answer: For a gravitationally bound system in equilibrium,

Kinetic energy = −1

2
(Gravitational potential energy) .

(The equality holds whenever Ï ≈ 0, where I is the moment of inertia.)

(d) (7 points) At the end of Chapter 10, Ryden writes “Thus, the very strong asymmetry
between baryons and antibaryons today and the large number of photons per baryon
are both products of a tiny asymmetry between quarks and anitquarks in the early
universe.” Explain in one or a few sentences how a tiny asymmetry between quarks
and anitquarks in the early universe results in a strong asymmetry between baryons
and antibaryons today.

Answer: When kT was large compared to 150 MeV, the excess of quarks over anti-
quarks was tiny: only about 3 extra quarks for every 109 antiquarks. But there was
massive quark-antiquark annihilation as kT fell below 150 MeV, so that today we
see the excess quarks, bound into baryons, and almost no sign of antiquarks.
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PROBLEM 5: DID YOU DO THE READING (2016)? (25 points)

(a) (5 points) In Chapter 8 of Barbara Ryden’s Introduction to Cosmology, she estimates
the contribution to Ω from clusters of galaxies as

(i) 0.01 (ii) 0.05 (iii) 0.20 (iv) 0.60 (v) 1.00

(b) (4 points) One method of estimating the total mass of a cluster of galaxies is based
on the virial theorem. With this method, one estimates the mass by measuring

(i) the radius containing half the luminosity and also the temperature of the X-ray
emitting gas at the center of the galaxy.

(ii) the velocity dispersion perpendicular to the line of sight and also the radius
containing half of the luminosity of the cluster.

(iii) the velocity dispersion along the line of sight and also the radius containing half

of the luminosity of the cluster.

(iv) the velocity dispersion along the line of sight and also the redshift of the cluster.

(v) the velocity dispersion perpendicular to the line of sight and also the redshift of
the cluster.

Explanation: The virial theorem relates the kinetic energy to the potential energy. The
key relationship is

1

2
M<v2> =

α

2

GM2

rh
,

where M is the mass of the cluster, <v2> is the average squared velocity of its
galaxies, and rh is the radius containing half the total mass, which is estimated by
the radius containing half the luminosity. α is a numerical factor depending on the
structure of the cluster, estimated at 0.4 based on observed clusters. Velocities along
the line of sight are measured by the spread in Doppler shifts, while velocities perpen-
dicular to the line of sight are essentially impossible to measure, eliminating answers
(ii) and (v). Since rh is needed, neither (i) nor (iv) include enough information. (iii)
is exactly right.

(c) (4 points) Another method of estimating the total mass of a cluster of galaxies is to
make detailed measurements of the x-rays emitted by the hot intracluster gas.

(i) By assuming that this gas is the dominant component of the mass of the cluster,
the mass of the cluster can be estimated.

(ii) By assuming that the hot gas comprises about a third of the mass of the cluster,
the total mass of the cluster can be estimated.
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(iii) By assuming that the gas is heated by stars and supernovae that make up
most of the mass of the cluster, the mass of these stars and supernovae can be
estimated.

(iv) By assuming that the gas is heated by interactions with dark matter, which
dominates the mass of the cluster, the mass of the cluster can be estimated.

(v) By assuming that this gas is in hydrostatic equilibrium, the temperature, mass

density, and even the chemical composition of the cluster can be modeled.

Explanation: The dominant component of the mass is apparently dark matter, so the
hot intracluster gas is only a small fraction, and we have no direct way of knowing
what fraction. But the gas settles into a state of hydrostatic equilibrium which
is determined by pressures and gravitational forces. The gas can be mapped by
measuring its x-rays, which allows astronomers to estimate the gravitational forces,
and hence the mass.

(d) (6 points) In Chapter 6 of The First Three Minutes, Steven Weinberg discusses three
reasons why the importance of a search for a 3◦K microwave radiation background
was not generally appreciated in the 1950s and early 1960s. Choose those three
reasons from the following list. (2 points for each right answer, circle at most 3.)

(i) The earliest calculations erroneously predicted a cosmic background tempera-
ture of only about 0.1◦K, and such a background would be too weak to detect.

(ii) There was a breakdown in communication between theorists and experimental-
ists.

(iii) It was not technologically possible to detect a signal as weak as a 3◦K microwave
background until about 1965.

(iv) Since almost all physicists at the time were persuaded by the steady state model,
the predictions of the big bang model were not taken seriously.

(v) It was extraordinarily difficult for physicists to take seriously any theory of the
early universe.

(vi) The early work on nucleosynthesis by Gamow, Alpher, Herman, and Follin, et
al., had attempted to explain the origin of all complex nuclei by reactions in the
early universe. This program was never very successful, and its credibility was
further undermined as improvements were made in the alternative theory, that
elements are synthesized in stars.

Answer: The correct answers were (ii), (v) and (vi). The others were incorrect for the

following reasons:

(i) the earliest prediction of the CMB temperature, by Alpher and Herman in 1948,
was 5 degrees, not 0.1 degrees.
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(iii) Weinberg quotes his experimental colleagues as saying that the 3◦K radiation

could have been observed “long before 1965, probably in the mid-1950s and per-

haps even in the mid-1940s.” To Weinberg, however, the historically interesting

question is not when the radiation could have been observed, but why radio

astronomers did not know that they ought to try.

(iv) Weinberg argues that physicists at the time did not pay attention to either the

steady state model or the big bang model, as indicated by the sentence in item

(v) which is a direct quote from the book: “It was extraordinarily difficult for

physicists to take seriously any theory of the early universe”.

(e) (6 points) In 1948 Ralph A. Alpher and Robert Herman wrote a paper predicting

a cosmic microwave background with a temperature of 5 K. The paper was based

on a cosmological model that they had developed with George Gamow, in which the

early universe was assumed to have been filled with hot neutrons. As the universe

expanded and cooled the neutrons underwent beta decay into protons, electrons, and

antineutrinos, until at some point the universe cooled enough for light elements to

be synthesized. Alpher and Herman found that to account for the observed present

abundances of light elements, the ratio of photons to nuclear particles must have

been about 109. Although the predicted temperature was very close to the actual

value of 2.7 K, the theory differed from our present theory in two ways. Circle the

two correct statements in the following list. (3 points for each right answer; circle at

most 2.)

(i) Gamow, Alpher, and Herman assumed that the neutron could decay, but now

the neutron is thought to be absolutely stable.

(ii) In the current theory, the universe started with nearly equal densities of protons

and neutrons, not all neutrons as Gamow, Alpher, and Herman assumed.

(iii) In the current theory, the universe started with mainly alpha particles, not all

neutrons as Gamow, Alpher, and Herman assumed. (Note: an alpha particle is

the nucleus of a helium atom, composed of two protons and two neutrons.)

(iv) In the current theory, the conversion of neutrons into protons (and vice versa)

took place mainly through collisions with electrons, positrons, neutrinos, and

antineutrinos, not through the decay of the neutrons.

(v) The ratio of photons to nuclear particles in the early universe is now believed

to have been about 103, not 109 as Alpher and Herman concluded.
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PROBLEM 6: EVOLUTION OF AN OPEN UNIVERSE

The evolution of an open, matter-dominated universe is described by the following
parametric equations:

ct = α(sinh θ − θ)
a√
κ

= α(cosh θ − 1) .

Evaluating the second of these equations at a/
√
κ = 2α yields a solution for θ:

2α = α(cosh θ − 1) =⇒ cosh θ = 3 =⇒ θ = cosh−1(3) .

We can use these results in the first equation to solve for t. Noting that

sinh θ =
√

cosh2 θ − 1 =
√

8 = 2
√

2 ,

we have

t =
α

c

[
2
√

2− cosh−1(3)
]
.

Numerically, t ≈ 1.06567α/c.

PROBLEM 7: ANTICIPATING A BIG CRUNCH

The critical density is given by

ρc =
3H2

0

8πG
,

so the mass density is given by

ρ = Ω0ρc = 2ρc =
3H2

0

4πG
. (S5.1)

Substituting this relation into

H2
0 =

8π

3
Gρ− kc2

a2
,

we find

H2
0 = 2H2

0 −
kc2

a2
,

from which it follows that
a√
k

=
c

H0
. (S5.2)
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Now use

α =
4π

3

Gρa3

k3/2c2
.

Substituting the values we have from Eqs. (S5.1) and (S5.2) for ρ and a/
√
k, we have

α =
c

H0
. (S5.3)

To determine the value of the parameter θ, use

a√
k

= α(1− cos θ) ,

which when combined with Eqs. (S5.2) and (S5.3) implies that cos θ = 0. The equation
cos θ = 0 has multiple solutions, but we know that the θ-parameter for a closed matter-
dominated universe varies between 0 and π during the expansion phase of the universe.
Within this range, cos θ = 0 implies that θ = π/2. Thus, the age of the universe at the
time these measurements are made is given by

t =
α

c
(θ − sin θ)

=
1

H0

(π
2
− 1
)
.

The total lifetime of the closed universe corresponds to θ = 2π, or

tfinal =
2πα

c
=

2π

H0
,

so the time remaining before the big crunch is given by

tfinal − t =
1

H0

[
2π −

(π
2
− 1
)]

=

(
3π

2
+ 1

)
1

H0
.

PROBLEM 8: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0. The
line element therefore reduces to

0 = −c2 dt2 + a2(t)dψ2 .
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Rearranging gives (
dψ

dt

)2

=
c2

a2(t)
,

which implies that

dψ

dt
= ± c

a(t)
.

The plus sign describes outward radial motion, while the minus sign describes inward
motion.

(b) The maximum value of the ψ coordinate that can be reached by time t is found by
integrating its rate of change:

ψhor =

∫ t

0

c

a(t′)
dt′ .

The physical horizon distance is the proper length of the shortest line drawn at the
time t from the origin to ψ = ψhor, which according to the metric is given by

`phys(t) =

∫ ψ=ψhor

ψ=0

ds =

∫ ψhor

0

a(t) dψ = a(t)

∫ t

0

c

a(t′)
dt′ .

(c) From part (a),
dψ

dt
=

c

a(t)
.

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one finds

dt

dθ
=
α

c
(1− cos θ) .

Then
dψ

dθ
=
dψ

dt

dt

dθ
=
α(1− cos θ)

a(t)
.

Then using a = α(1− cos θ), as stated in the problem, one has the very simple result

dψ

dθ
= 1 .
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(d) This part is very simple if one knows that ψ must change by 2π before the photon
returns to its starting point. Since dψ/dθ = 1, this means that θ must also change
by 2π. From a = α(1− cos θ), one can see that a returns to zero at θ = 2π, so this
is exactly the lifetime of the universe. So,

Time for photon to return

Lifetime of universe
= 1 .

If it is not clear why ψ must change by 2π for the photon to return to its starting
point, then recall the construction of the closed universe that was used in Lecture
Notes 5. The closed universe is described as the 3-dimensional surface of a sphere in
a four-dimensional Euclidean space with coordinates (x, y, z, w):

x2 + y2 + z2 + w2 = a2 ,

where a is the radius of the sphere. The Robertson-Walker coordinate system is
constructed on the 3-dimensional surface of the sphere, taking the point (0, 0, 0, 1)
as the center of the coordinate system. If we define the w-direction as “north,”
then the point (0, 0, 0, 1) can be called the north pole. Each point (x, y, z, w) on the
surface of the sphere is assigned a coordinate ψ, defined to be the angle between the
positive w axis and the vector (x, y, z, w). Thus ψ = 0 at the north pole, and ψ = π
for the antipodal point, (0, 0, 0,−1), which can be called the south pole. In making
the round trip the photon must travel from the north pole to the south pole and
back, for a total range of 2π.

Discussion: Some students answered that the photon would return in the lifetime
of the universe, but reached this conclusion without considering the details of the
motion. The argument was simply that, at the big crunch when the scale factor
returns to zero, all distances would return to zero, including the distance between
the photon and its starting place. This statement is correct, but it does not quite
answer the question. First, the statement in no way rules out the possibility that
the photon might return to its starting point before the big crunch. Second, if we
use the delicate but well-motivated definitions that general relativists use, it is not
necessarily true that the photon returns to its starting point at the big crunch. To
be concrete, let me consider a radiation-dominated closed universe—a hypothetical
universe for which the only “matter” present consists of massless particles such as
photons or neutrinos. In that case (you can check my calculations) a photon that
leaves the north pole at t = 0 just reaches the south pole at the big crunch. It
might seem that reaching the south pole at the big crunch is not any different from
completing the round trip back to the north pole, since the distance between the
north pole and the south pole is zero at t = tCrunch, the time of the big crunch.
However, suppose we adopt the principle that the instant of the initial singularity
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and the instant of the final crunch are both too singular to be considered part of the

spacetime. We will allow ourselves to mathematically consider times ranging from

t = ε to t = tCrunch − ε, where ε is arbitrarily small, but we will not try to describe

what happens exactly at t = 0 or t = tCrunch. Thus, we now consider a photon that

starts its journey at t = ε, and we follow it until t = tCrunch − ε. For the case of the

matter-dominated closed universe, such a photon would traverse a fraction of the

full circle that would be almost 1, and would approach 1 as ε→ 0. By contrast, for

the radiation-dominated closed universe, the photon would traverse a fraction of the

full circle that is almost 1/2, and it would approach 1/2 as ε → 0. Thus, from this

point of view the two cases look very different. In the radiation-dominated case, one

would say that the photon has come only half-way back to its starting point.

PROBLEM 9: LENGTHS AND AREAS IN A TWO-DIMEN-

SIONAL METRIC

a) Along the first segment dθ = 0, so ds2 = (1+ar)2 dr2, or ds = (1+ar) dr. Integrating,

the length of the first segment is found to be

S1 =

∫ r0

0

(1 + ar) dr = r0 +
1

2
ar2

0 .

Along the second segment dr = 0, so ds = r(1 + br) dθ, where r = r0. So the length

of the second segment is

S2 =

∫ π/2

0

r0(1 + br0) dθ =
π

2
r0(1 + br0) .

Finally, the third segment is identical to the first, so S3 = S1. The total length is

then

S = 2S1 + S2 = 2

(
r0 +

1

2
ar2

0

)
+
π

2
r0(1 + br0)

=
(

2 +
π

2

)
r0 +

1

2
(2a+ πb)r2

0 .



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 50

b) To find the area, it is best to divide the region into concentric strips as shown:

Note that the strip has a coordinate width of dr, but the distance across the width
of the strip is determined by the metric to be

dh = (1 + ar) dr .

The length of the strip is calculated the same way as S2 in part (a):

s(r) =
π

2
r(1 + br) .

The area is then

dA = s(r) dh ,

so

A =

∫ r0

0

s(r) dh

=

∫ r0

0

π

2
r(1 + br)(1 + ar) dr

=
π

2

∫ r0

0

[r + (a+ b)r2 + abr3] dr

=
π

2

[
1

2
r2
0 +

1

3
(a+ b)r3

0 +
1

4
abr4

0

]
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PROBLEM 10: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (h, 0, 0), there is no variation in θ or φ.
So dθ = dφ = 0, and

ds =
a dr√
1− r2

.

So

`p =

∫ h

0

a dr√
1− r2

= a sin−1 h .

(b) In this case it is only θ that varies, so dr = dφ = 0. So

ds = ar dθ ,

so

sp = ah∆θ .

(c) From part (a), one has
h = sin(`p/a) .

Inserting this expression into the answer to (b), and then solving for ∆θ, one has

∆θ =
sp

a sin(`p/a)
.

Note that as a→∞, this approaches the Euclidean result, ∆θ = sp/`p.

PROBLEM 11: THE GENERAL SPHERICALLY SYMMETRIC METRIC

(a) The metric is given by

ds2 = dr2 + ρ2(r)
[
dθ2 + sin2 θ dφ2

]
.

The radius a is defined as the physical length of a radial line which extends from the
center to the boundary of the sphere. The length of a path is just the integral of ds,
so

a =

∫
radial path from
origin to r0

ds .
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The radial path is at a constant value of θ and φ, so dθ = dφ = 0, and then ds = dr.
So

a =

∫ r0

0

dr = r0 .

(b) On the surface r = r0, so dr ≡ 0. Then

ds2 = ρ2(r0)
[
dθ2 + sin2 θ dφ2

]
.

To find the area element, consider first a path obtained by varying only θ. Then ds =
ρ(r0) dθ. Similarly, a path obtained by varying only φ has length ds = ρ(r0) sin θ dφ.
Furthermore, these two paths are perpendicular to each other, a fact that is incor-
porated into the metric by the absence of a dr dθ term. Thus, the area of a small
rectangle constructed from these two paths is given by the product of their lengths,
so

dA = ρ2(r0) sin θ dθ dφ .

The area is then obtained by integrating over the range of the coordinate variables:

A = ρ2(r0)

∫ 2π

0

dφ

∫ π

0

sin θ dθ

= ρ2(r0)(2π)
(
− cos θ

∣∣∣π
0

)
=⇒ A = 4πρ2(r0) .

As a check, notice that if ρ(r) = r, then the metric becomes the metric of Euclidean
space, in spherical polar coordinates. In this case the answer above becomes the
well-known formula for the area of a Euclidean sphere, 4πr2.

(c) As in Problem 2 of Problem Set 5, we can imagine breaking up the volume into
spherical shells of infinitesimal thickness, with a given shell extending from r to
r + dr. By the previous calculation, the area of such a shell is A(r) = 4πρ2(r). (In
the previous part we considered only the case r = r0, but the same argument applies
for any value of r.) The thickness of the shell is just the path length ds of a radial
path corresponding to the coordinate interval dr. For radial paths the metric reduces
to ds2 = dr2, so the thickness of the shell is ds = dr. The volume of the shell is then

dV = 4πρ2(r) dr .

The total volume is then obtained by integration:

V = 4π

∫ r0

0

ρ2(r) dr .
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Checking the answer for the Euclidean case, ρ(r) = r, one sees that it gives V =
(4π/3)r3

0, as expected.

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of the
two coordinates are related by

dσ

dr
= 2r = 2

√
σ ,

so

dr2 =
dσ2

4σ
.

The function ρ(r) can then be written as ρ(
√
σ ), so

ds2 =
dσ2

4σ
+ ρ2(

√
σ )
[
dθ2 + sin2 θ dφ2

]
.

PROBLEM 12: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal changes in
the coordinates r, θ and φ equals the differential volume element dV . Therefore

dV = a(t)
dr√

1− kr2
× a(t)rdθ × a(t)r sin θdφ

The total volume is then

V =

∫
dV = a3(t)

∫ rmax

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
r2 sin θ√
1− kr2

We can do the angular integrations immediately:

V = 4πa3(t)

∫ rmax

0

r2dr√
1− kr2

.

[Pedagogical Note: If you don’t see through the solutions above, then note that the volume
of the sphere can be determined by integration, after first breaking the volume into
infinitesimal cells. A generic cell is shown in the diagram below:
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The cell includes the volume lying between r and r+ dr, between θ and θ+ dθ, and
between φ and φ + dφ. In the limit as dr, dθ, and dφ all approach zero, the cell
approaches a rectangular solid with sides of length:

ds1 = a(t)
dr√

1− kr2

ds2 = a(t)r dθ

ds3 = a(t)r sin θ dθ .

Here each ds is calculated by using the metric to find ds2, in each case allowing only
one of the quantities dr, dθ, or dφ to be nonzero. The infinitesimal volume element
is then dV = ds1ds2ds3, resulting in the answer above. The derivation relies on the
orthogonality of the dr, dθ, and dφ directions; the orthogonality is implied by the
metric, which otherwise would contain cross terms such as dr dθ.]

[Extension: The integral can in fact be carried out, using the substitution

√
k r = sinψ (if k > 0)

√
−k r = sinhψ (if k > 0).

The answer is

V =


2πa3(t)

 sin−1
(√

k rmax

)
k3/2

−
√

1− kr2
max

k

 (if k > 0)

2πa3(t)

[√
1− kr2

max

(−k)
−

sinh−1
(√
−k rmax

)
(−k)3/2

]
(if k < 0) .]
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PROBLEM 13: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes singular.
Since the metric contains the factor(

1− 2GM

rc2

)
,

it becomes singular at

RS =
2GM

c2
.

b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

ds2 =

(
1− 2GM

rc2

)−1

dr2 ,

so

ds =
dr√

1− 2GM
rc2

.

The proper distance from A to B is obtained by adding the proper lengths of all the
segments along the path, so

sAB =

∫ rB

rA

dr√
1− 2GM

rc2

.

EXTENSION: The integration can be carried out explicitly. First use the expression
for the Schwarzschild radius to rewrite the expression for sAB as

sAB =

∫ rB

rA

√
r dr√

r −RS
.

Then introduce the hyperbolic trigonometric substitution

r = RS cosh2 u .

One then has √
r −RS =

√
RS sinhu
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dr = 2RS coshu sinhu du ,

and the indefinite integral becomes∫ √
r dr√

r −RS
= 2RS

∫
cosh2 u du

= RS

∫
(1 + cosh 2u)du

= RS

(
u+

1

2
sinh 2u

)
= RS(u+ sinhu coshu)

= RS sinh−1

(√
r

RS
− 1

)
+
√
r(r −RS) .

Thus,

sAB = RS

[
sinh−1

(√
rB
RS
− 1

)
− sinh−1

(√
rA
RS
− 1

)]
+
√
rB(rB −RS)−

√
rA(rA −RS) .

c) A tick of the clock and the following tick are two events that differ only in their time
coordinates. Thus, the metric reduces to

−c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 ,

so

dτ =

√
1− 2GM

rc2
dt .

The reading on the observer’s clock corresponds to the proper time interval dτ , so
the corresponding interval of the coordinate t is given by

∆tA =
∆τA√

1− 2GM
rAc2

.

d) Since the Schwarzschild metric does not change with time, each pulse leaving A will
take the same length of time to reach B. Thus, the pulses emitted by A will arrive
at B with a time coordinate spacing

∆tB = ∆tA =
∆τA√

1− 2GM
rAc2

.
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The clock at B, however, will read the proper time and not the coordinate time.

Thus,

∆τB =

√
1− 2GM

rBc2
∆tB

=

√√√√1− 2GM
rBc2

1− 2GM
rAc2

∆τA .

e) From parts (a) and (b), the proper distance between A and B can be rewritten as

sAB =

∫ rB

RS

√
rdr√

r −RS
.

The potentially divergent part of the integral comes from the range of integration in

the immediate vicinity of r = RS, say RS < r < RS + ε. For this range the quantity√
r in the numerator can be approximated by

√
RS , so the contribution has the form

√
RS

∫ RS+ε

RS

dr√
r −RS

.

Changing the integration variable to u ≡ r − RS , the contribution can be easily

evaluated:

√
RS

∫ RS+ε

RS

dr√
r −RS

=
√
RS

∫ ε

0

du√
u

= 2
√
RSε <∞ .

So, although the integrand is infinite at r = RS , the integral is still finite.

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when rA = RS ,

The time interval ∆τB diverges.
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PROBLEM 14: GEODESICS

The geodesic equation for a curve xi(λ), where the parameter λ is the arc length
along the curve, can be written as

d

dλ

{
gij
dxj

dλ

}
=

1

2
(∂igk`)

dxk

dλ

dx`

dλ
.

Here the indices j, k, and ` are summed from 1 to the dimension of the space, so there
is one equation for each value of i.

(a) The metric is given by

ds2 = gijdx
idxj = dr2 + r2 dθ2 ,

so
grr = 1, gθθ = r2 , grθ = gθr = 0 .

First taking i = r, the nonvanishing terms in the geodesic equation become

d

dλ

{
grr

dr

dλ

}
=

1

2
(∂rgθθ)

dθ

dλ

dθ

dλ
,

which can be written explicitly as

d

dλ

{
dr

dλ

}
=

1

2

(
∂rr

2
)( dθ

dλ

)2

,

or

d2r

dλ2
= r

(
dθ

dλ

)2

.

For i = θ, one has the simplification that gij is independent of θ for all (i, j). So

d

dλ

{
r2 dθ

dλ

}
= 0 .

(b) The first step is to parameterize the curve, which means to imagine moving along
the curve, and expressing the coordinates as a function of the distance traveled. (I
am calling the locus y = 1 a curve rather than a line, since the techniques that are
used here are usually applied to curves. Since a line is a special case of a curve, there
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is nothing wrong with treating the line as a curve.) In Cartesian coordinates, the
curve y = 1 can be parameterized as

x(λ) = λ , y(λ) = 1 .

(The parameterization is not unique, because one can choose λ = 0 to represent any
point along the curve.) Converting to the desired polar coordinates,

r(λ) =
√
x2(λ) + y2(λ) =

√
λ2 + 1 ,

θ(λ) = tan−1 y(λ)

x(λ)
= tan−1(1/λ) .

Calculating the needed derivatives,*

dr

dλ
=

λ√
λ2 + 1

d2r

dλ2
=

1√
λ2 + 1

− λ2

(λ2 + 1)
3/2

=
1

(λ2 + 1)
3/2

=
1

r3

dθ

dλ
= − 1

1 +
(

1
λ

)2 1

λ2
= − 1

r2
.

Then, substituting into the geodesic equation for i = r,

d2r

dλ2
= r

(
dθ

dλ

)2

⇐⇒ 1

r3
= r

(
− 1

r2

)2

,

which checks. Substituting into the geodesic equation for i = θ,

d

dλ

{
r2 dθ

dλ

}
= 0⇐⇒ d

dλ

{
r2

(
− 1

r2

)}
= 0 ,

which also checks.

* If you do not remember how to differentiate φ = tan−1(z), then you should know
how to derive it. Write z = tanφ = sinφ/ cosφ, so

dz =

(
cosφ

cosφ
+

sin2 φ

cos2 φ

)
dφ = (1 + tan2 φ)dφ .

Then
dφ

dz
=

1

1 + tan2 φ
=

1

1 + z2
.
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PROBLEM 15: AN EXERCISE IN TWO-DIMENSIONAL METRICS (30
points)

(a) Since
r(θ) = (1 + ε cos2 θ) r0 ,

as the angular coordinate θ changes by dθ, r changes by

dr =
dr

dθ
dθ = −2εr0 cos θ sin θ dθ .

ds2 is then given by

ds2 = dr2 + r2dθ2

= 4ε2r2
0 cos2 θ sin2 θ dθ2 + (1 + ε cos2 θ)2 r2

0 dθ2

=
[
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2

]
r2
0 dθ2 ,

so

ds = r0

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

Since θ runs from θ1 to θ2 as the curve is swept out,

S = r0

∫ θ2

θ1

√
4ε2 cos2 θ sin2 θ + (1 + ε cos2 θ)2 dθ .

(b) Since θ does not vary along this path,

ds =

√
1 +

r

a
dr ,

and so

R =

∫ r0

0

√
1 +

r

a
dr .

(c) Since the metric does not contain a term in dr dθ, the r and θ directions are orthog-
onal. Thus, if one considers a small region in which r is in the interval r′ to r′+ dr′,
and θ is in the interval θ′ to θ′ + dθ′, then the region can be treated as a rectangle.
The side along which r varies has length dsr =

√
1 + (r′/a) dr′, while the side along

which θ varies has length dsθ = r′ dθ′. The area is then

dA = dsr dsθ = r′
√

1 + (r′/a) dr′ dθ′ .
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To cover the area for which r < r0, r′ must be integrated from 0 to r0, and θ′ must
be integrated from 0 to 2π:

A =

∫ r0

0

dr′
∫ 2π

0

dθ′ r′
√

1 + (r′/a) .

But ∫ 2π

0

dθ′ = 2π ,

so

A = 2π

∫ r0

0

dr′ r′
√

1 + (r′/a) .

You were not asked to carry out the integration, but it can be done by using the
substitution u = 1 + (r′/a), so du = (1/a) dr′, and r′ = a(u− 1). The result is

A =
4πa2

15

[
2 +

(
3r2

0

a2
+
r0

a
− 2

)√
1 +

r0

a

]
.

(d) The nonzero metric coefficients are given by

grr = 1 +
r

a
, gθθ = r2 ,

so the metric is diagonal. For i = 1 = r, the geodesic equation becomes

d

ds

{
grr

dr

ds

}
=

1

2

∂grr
∂r

dr

ds

dr

ds
+

1

2

∂gθθ
∂r

dθ

ds

dθ

ds
,

so if we substitute the values from above, we have

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

2

∂

∂r

(
1 +

r

a

)(dr

ds

)2

+
1

2

∂r2

∂r

(
dθ

ds

)2

.

Simplifying slightly,

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

2a

(
dr

ds

)2

+ r

(
dθ

ds

)2

.

The answer above is perfectly acceptable, but one might want to expand the left-hand
side:

d

ds

{(
1 +

r

a

) dr

ds

}
=

1

a

(
dr

ds

)2

+
(

1 +
r

a

) d2r

ds2
.
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Inserting this expansion into the boxed equation above, the first term can be brought
to the right-hand side, giving

(
1 +

r

a

) d2r

ds2
= − 1

2a

(
dr

ds

)2

+ r

(
dθ

ds

)2

.

The i = 2 = θ equation is simpler, because none of the gij coefficients depend on θ,
so the right-hand side of the geodesic equation vanishes. One has simply

d

ds

{
r2 dθ

ds

}
= 0 .

For most purposes this is the best way to write the equation, since it leads immedi-
ately to r2(dθ/ds) = const. However, it is possible to expand the derivative, giving
the alternative form

r2 d2θ

ds2
+ 2r

dr

ds

dθ

ds
= 0 .

PROBLEM 16: GEODESICS ON THE SURFACE OF A SPHERE

(a) Rotations are easy to understand in Cartesian coordinates. The relationship between
the polar and Cartesian coordinates is given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The equator is then described by θ = π/2, and φ = ψ, where ψ is a parameter
running from 0 to 2π. Thus, the equator is described by the curve xi(ψ), where

x1 = x = r cosψ

x2 = y = r sinψ

x3 = z = 0 .
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Now introduce a primed coordinate system that is related to the original system by
a rotation in the y-z plane by an angle α:

x = x′

y = y′ cosα− z′ sinα

z = z′ cosα+ y′ sinα .

The rotated equator, which we seek to describe, is just the standard equator in the
primed coordinates:

x′ = r cosψ , y′ = r sinψ , z′ = 0 .

Using the relation between the two coordinate systems given above,

x = r cosψ

y = r sinψ cosα

z = r sinψ sinα .

Using again the relations between polar and Cartesian coordinates,

cos θ =
z

r
= sinψ sinα

tanφ =
y

x
= tanψ cosα .

(b) A segment of the equator corresponding to an interval dψ has length a dψ, so the
parameter ψ is proportional to the arc length. Expressed in terms of the metric, this
relationship becomes

ds2 = gij
dxi

dψ

dxj

dψ
dψ2 = a2dψ2 .
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Thus the quantity

A ≡ gij
dxi

dψ

dxj

dψ

is equal to a2, so the geodesic equation (5.50) reduces to the simpler form of
Eq. (5.52). (Note that we are following the notation of Lecture Notes 5, except
that the variable used to parameterize the path is called ψ, rather than λ or s. Al-
though A is not equal to 1 as we assumed in Lecture Notes 5, it is easily seen that
Eq. (5.52) follows from (5.50) provided only that A = constant.) Thus,

d

dψ

{
gij
dxj

dψ

}
=

1

2
(∂igk`)

dxk

dψ

dx`

dψ
.

For this problem the metric has only two nonzero components:

gθθ = a2 , gφφ = a2 sin2 θ .

Taking i = θ in the geodesic equation,

d

dψ

{
gθθ

dθ

dψ

}
=

1

2
∂θgφφ

dφ

dψ

dφ

dψ
=⇒

d2θ

dψ2
= sin θ cos θ

(
dφ

dψ

)2

.

Taking i = φ,
d

dψ

{
a2 sin2 θ

dφ

dψ

}
= 0 =⇒

d

dψ

{
sin2 θ

dφ

dψ

}
= 0 .

(c) This part is mainly algebra. Taking the derivative of

cos θ = sinψ sinα

implies
− sin θ dθ = cosψ sinαdψ .

Then, using the trigonometric identity sin θ =
√

1− cos2 θ, one finds

sin θ =

√
1− sin2 ψ sin2 α ,
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so
dθ

dψ
= − cosψ sinα√

1− sin2 ψ sin2 α
.

Similarly

tanφ = tanψ cosα =⇒ sec2 φdφ = sec2 ψ dψ cosα .

Then
sec2 φ = tan2 φ+ 1 = tan2 ψ cos2 α+ 1

=
1

cos2 ψ
[sin2 ψ cos2 α+ cos2 ψ]

= sec2 ψ[sin2 ψ(1− sin2 α) + cos2 ψ]

= sec2 ψ[1− sin2 ψ sin2 α] ,

So
dφ

dψ
=

cosα

1− sin2 ψ sin2 α
.

To verify the geodesic equations of part (b), it is easiest to check the second one

first:

sin2 θ
dφ

dψ
= (1− sin2 ψ sin2 α)

cosα

1− sin2 ψ sin2 α

= cosα ,

so clearly

d

dψ

{
sin2 θ

dφ

dψ

}
=

d

dψ
(cosα) = 0 .

To verify the first geodesic equation from part (b), first calculate the left-hand side,

d2θ/dψ2, using our result for dθ/dψ:

d2θ

dψ2
=

d

dψ

(
dθ

dψ

)
=

d

dψ

{
− cosψ sinα√

1− sin2 ψ sin2 α

}
.

After some straightforward algebra, one finds

d2θ

dψ2
=

sinψ sinα cos2 α[
1− sin2 ψ sin2 α

]3/2 .
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The right-hand side of the first geodesic equation can be evaluated using the expres-
sion found above for dφ/dψ, giving

sin θ cos θ

(
dφ

dψ

)2

=

√
1− sin2 ψ sin2 α sinψ sinα

cos2 α[
1− sin2 ψ sin2 α

]2
=

sinψ sinα cos2 α[
1− sin2 ψ sin2 α

]3/2 .

So the left- and right-hand sides are equal.

PROBLEM 17: GEODESICS IN A CLOSED UNIVERSE

(a) (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces do

−c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2

}
.

Dividing by dt2,

−c2
(
dτ

dt

)2

= −c2 +
a2(t)

1− r2

(
dr

dt

)2

.

Rearranging,

dτ

dt
=

√
1− a2(t)

c2(1− r2)

(
dr

dt

)2

.

(b) (3 points)

dt

dτ
=

1

dτ

dt

=
1√

1− a2(t)

c2(1− r2)

(
dr

dt

)2
.

(c) (10 points) During any interval of clock time dt, the proper time that would be
measured by a clock moving with the object is given by dτ , as given by the metric.
Using the answer from part (a),

dτ =
dτ

dt
dt =

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .
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Integrating to find the total proper time,

τ =

∫ t2

t1

√
1− a2(t)

c2(1− r2
p)

(
drp
dt

)2

dt .

(d) (10 points) The physical distance d` that the object moves during a given time
interval is related to the coordinate distance dr by the spatial part of the metric:

d`2 = ds2 = a2(t)

{
dr2

1− r2

}
=⇒ d` =

a(t)√
1− r2

dr .

Thus

vphys =
d`

dt
=

a(t)√
1− r2

dr

dt
.

Discussion: A common mistake was to include −c2 dt2 in the expression for d`2. To
understand why this is not correct, we should think about how an observer would
measure d`, the distance to be used in calculating the velocity of a passing object.
The observer would place a meter stick along the path of the object, and she would
mark off the position of the object at the beginning and end of a time interval dtmeas.
Then she would read the distance by subtracting the two readings on the meter stick.
This subtraction is equal to the physical distance between the two marks, measured
at the same time t. Thus, when we compute the distance between the two marks,
we set dt = 0. To compute the speed she would then divide the distance by dtmeas,
which is nonzero.

(e) (10 points) We start with the standard formula for a geodesic, as written on the
front of the exam:

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
.

This formula is true for each possible value of µ, while the Einstein summation
convention implies that the indices ν, λ, and σ are summed. We are trying to derive
the equation for r, so we set µ = r. Since the metric is diagonal, the only contribution
on the left-hand side will be ν = r. On the right-hand side, the diagonal nature of
the metric implies that nonzero contributions arise only when λ = σ. The term will
vanish unless dxλ/dτ is nonzero, so λ must be either r or t (i.e., there is no motion
in the θ or φ directions). However, the right-hand side is proportional to

∂gλσ
∂r

.
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Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only nonzero
contribution on the right-hand side arises from λ = σ = r. Using

grr =
a2(t)

1− r2
,

the geodesic equation becomes

d

dτ

{
grr

dr

dτ

}
=

1

2
(∂rgrr)

dr

dτ

dr

dτ
,

or
d

dτ

{
a2

1− r2

dr

dτ

}
=

1

2

[
∂r

(
a2

1− r2

)]
dr

dτ

dr

dτ
,

or finally

d

dτ

{
a2

1− r2

dr

dτ

}
= a2 r

(1− r2)2

(
dr

dτ

)2

.

This matches the form shown in the question, with

A =
a2

1− r2
, and C = a2 r

(1− r2)2
,

with B = D = E = 0.

(f) (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too bad
if one does the calculation in an efficient way. One good way to start is to simplify
the expression for p. Using the answer from (d),

p =
mvphys√
1− v2

phys

c2

=
m a(t)√

1−r2
dr
dt√

1− a2

c2(1−r2)

(
dr
dt

)2 .

Using the answer from (b), this simplifies to

p = m
a(t)√
1− r2

dr

dt

dt

dτ
= m

a(t)√
1− r2

dr

dτ
.

Multiply the geodesic equation by m, and then use the above result to rewrite it as

d

dτ

{
ap√

1− r2

}
= ma2 r

(1− r2)2

(
dr

dτ

)2

.
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Expanding the left-hand side,

LHS =
d

dτ

{
ap√

1− r2

}
=

1√
1− r2

d

dτ
{ap}+ ap

r

(1− r2)
3/2

dr

dτ

=
1√

1− r2

d

dτ
{ap}+ma2 r

(1− r2)
2

(
dr

dτ

)2

.

Inserting this expression back into left-hand side of the original equation, one sees
that the second term cancels the expression on the right-hand side, leaving

1√
1− r2

d

dτ
{ap} = 0 .

Multiplying by
√

1− r2, one has the desired result:

d

dτ
{ap} = 0 =⇒ p ∝ 1

a(t)
.

PROBLEM 18: A TWO-DIMENSIONAL CURVED SPACE (40 points)

(a) For θ = constant, the expression for the metric reduces to

ds2 =
a du2

4u(a− u)
=⇒

ds =
1

2

√
a

u(a− u)
du .

To find the length of the radial line shown, one must in-
tegrate this expression from the value
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of u at the center, which is 0, to the value of u at the outer edge, which is a. So

R =
1

2

∫ a

0

√
a

u(a− u)
du .

You were not expected to do it, but the integral can be carried out, giving R =
(π/2)

√
a.

(b) For u = constant, the expression for the metric reduces to

ds2 = udθ2 =⇒ ds =
√
udθ .

Since θ runs from 0 to 2π, and u = a for the circumference
of the space,

S =

∫ 2π

0

√
a dθ = 2π

√
a .

(c) To evaluate the answer to first order in du means to neglect
any terms that would be proportional to du2 or higher pow-
ers. This means that we can treat the annulus as if it were
arbitrarily thin, in which case we can imagine bending it
into a rectangle without changing its area. The area is then
equal to the circumference times the width. Both the cir-
cumference and the width must be calculated by using the
metric:
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dA = circumference× width

= [2π
√
u0 ]×

[
1

2

√
a

u0(a− u0)
du

]

= π

√
a

(a− u0)
du .

(d) We can find the total area by imagining that it is broken up into annuluses, where
a single annulus starts at radial coordinate u and extends to u+ du. As in part (a),
this expression must be integrated from the value of u at the center, which is 0, to
the value of u at the outer edge, which is a.

A = π

∫ a

0

√
a

(a− u)
du .

You did not need to carry out this integration, but the answer would be A = 2πa.

(e) From the list at the front of the exam, the general formula for a geodesic is written
as

d

ds

[
gij

dxj

ds

]
=

1

2

∂gk`
∂xi

dxk

ds

dx`

ds
.

The metric components gij are related to ds2 by

ds2 = gij dxi dxj ,

where the Einstein summation convention (sum over repeated indices) is assumed.
In this case

g11 ≡ guu =
a

4u(a− u)

g22 ≡ gθθ = u

g12 = g21 = 0 ,

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-hand
side is found by looking at the geodesic equations for i = 1. Of course j, k, and `
must all be summed, but the only nonzero contributions arise when j = 1, and k
and ` are either both equal to 1 or both equal to 2:

d

ds

[
guu

du

ds

]
=

1

2

∂guu
∂u

(
du

ds

)2

+
1

2

∂gθθ
∂u

(
dθ

ds

)2

.
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d

ds

[
a

4u(a− u)

du

ds

]
=

1

2

[
d

du

(
a

4u(a− u)

)](
du

ds

)2

+
1

2

[
d

du
(u)

](
dθ

ds

)2

=
1

2

[
a

4u(a− u)2
− a

4u2(a− u)

](
du

ds

)2

+
1

2

(
dθ

ds

)2

=
1

8

a(2u− a)

u2(a− u)2

(
du

ds

)2

+
1

2

(
dθ

ds

)2

.

(f) This part is solved by the same method, but it is simpler. Here we consider the
geodesic equation with i = 2. The only term that contributes on the left-hand side
is j = 2. On the right-hand side one finds nontrivial expressions when k and ` are
either both equal to 1 or both equal to 2. However, the terms on the right-hand side
both involve the derivative of the metric with respect to x2 = θ, and these derivatives
all vanish. So

d

ds

[
gθθ

dθ

ds

]
=

1

2

∂guu
∂θ

(
du

ds

)2

+
1

2

∂gθθ
∂θ

(
dθ

ds

)2

,

which reduces to

d

ds

[
u

dθ

ds

]
= 0 .

PROBLEM 19: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

−c2 dτ2 = −c2 dt2 +
[
dr2 + r2 (dφ+ ω dt)

2
+ dz2

]
,

and the metric coefficients are then just read off from this expression:

g11 ≡ grr = 1

g00 ≡ gtt = coefficient of dt2 = −c2 + r2ω2

g20 ≡ g02 ≡ gφt ≡ gtφ =
1

2
× coefficient of dφdt = r2ω2

g22 ≡ gφφ = coefficient of dφ2 = r2

g33 ≡ gzz = coefficient of dz2 = 1 .
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Note that the off-diagonal term gφt must be multiplied by 1/2, because the expression

3∑
µ=0

3∑
ν=0

gµν dx
µ dxν

includes the two equal terms g20 dφdt+ g02 dtdφ, where g20 ≡ g02.

(b) Starting with the general expression

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
,

we set µ = r:
d

dτ

{
grν

dxν

dτ

}
=

1

2
(∂rgλσ)

dxλ

dτ

dxσ

dτ
.

When we sum over ν on the left-hand side, the only value for which grν 6= 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

LHS =
d

dτ

(
grr

dx1

dτ

)
=

d

dτ

(
dr

dτ

)
=

d2r

dτ2
.

The RHS includes every combination of λ and σ for which gλσ depends on r, so that
∂r gλσ 6= 0. This means gtt, gφφ, and gφt. So,

RHS =
1

2
∂r(−c2 + r2ω2)

(
dt

dτ

)2

+
1

2
∂r(r

2)

(
dφ

dτ

)2

+ ∂r(r
2ω)

dφ

dτ

dt

dτ

= rω2

(
dt

dτ

)2

+ r

(
dφ

dτ

)2

+ 2rω
dφ

dτ

dt

dτ

= r

(
dφ

dτ
+ ω

dt

dτ

)2

.

Note that the final term in the first line is really the sum of the contributions from
gφt and gtφ, where the two terms were combined to cancel the factor of 1/2 in the
general expression. Finally,

d2r

dτ2
= r

(
dφ

dτ
+ ω

dt

dτ

)2

.

If one expands the RHS as

d2r

dτ2
= r

(
dφ

dτ

)2

+ rω2

(
dt

dτ

)2

+ 2rω
dφ

dτ

dt

dτ
,
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then one can identify the term proportional to ω2 as the centrifugal force, and the
term proportional to ω as the Coriolis force.

(c) Substituting µ = φ,

d

dτ

{
gφν

dxν

dτ

}
=

1

2
(∂φgλσ)

dxλ

dτ

dxσ

dτ
.

But none of the metric coefficients depend on φ, so the right-hand side is zero. The
left-hand side receives contributions from ν = φ and ν = t:

d

dτ

(
gφφ

dφ

dτ
+ gφt

dt

dτ

)
=

d

dτ

(
r2 dφ

dτ
+ r2ω

dt

dτ

)
= 0 ,

so

d

dτ

(
r2 dφ

dτ
+ r2ω

dt

dτ

)
= 0 .

Note that one cannot “factor out” r2, since r can depend on τ . If this equation
is expanded to give an equation for d2φ/dτ2, the term proportional to ω would
be identified as the Coriolis force. There is no term proportional to ω2, since the
centrifugal force has no component in the φ direction.

(d) If Eq. (P19.1) of the problem is divided by c2dt2, one obtains(
dτ

dt

)2

= 1− 1

c2

[(
dr

dt

)2

+ r2

(
dφ

dt
+ ω

)2

+

(
dz

dt

)2
]
.

Then using
dt

dτ
=

1(
dτ
dt

) ,
one has

dt

dτ
=

1√√√√1− 1

c2

[(
dr

dt

)2

+ r2

(
dφ

dt
+ ω

)2

+

(
dz

dt

)2
] .

Note that this equation is really just

dt

dτ
=

1√
1− v2/c2

,

adapted to the rotating cylindrical coordinate system.
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PROBLEM 20: THE STABILITY OF SCHWARZSCHILD ORBITS∗ (30
points)

From the metric:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 , (S20.1)

and the convention ds2 = gµνdx
µdxν we read the nonvanishing metric components:

gtt = −h(r)c2 , grr =
1

h(r)
, gθθ = r2 , gφφ = r2 sin2 θ . (S20.2)

We are told that the orbit has θ = π/2, so on the orbit dθ = 0 and the relevant metric
and metric components are:

ds2 = −c2dτ2 = −h(r) c2dt2 + h(r)−1dr2 + r2dφ2 , (S20.3)

gtt = −h(r)c2 , grr =
1

h(r)
, gφφ = r2 . (S20.4)

We also know that

h(r) = 1− RS
r
. (S20.5)

(a) The geodesic equation

d

dτ

[
gµν

dxν

dτ

]
=

1

2

∂gλσ
∂xµ

dxλ

dτ

dxσ

dτ
, (S20.6)

for the index value µ = r takes the form

d

dτ

[
grr

dr

dτ

]
=

1

2

∂gλσ
∂r

dxλ

dτ

dxσ

dτ
.

Expanding out

d

dτ

[
1

h

dr

dτ

]
=

1

2

∂gtt
∂r

(
dt

dτ

)2

+
1

2

∂grr
∂r

(
dr

dτ

)2

+
1

2

∂gφφ
∂r

(
dφ

dτ

)2

.

Using the values in (S20.4) to evaluate the right-hand side and taking the derivatives on
the left-hand side:

− h
′

h2

(
dr

dτ

)2

+
1

h

d2r

dτ2
= −1

2
c2h′

(
dt

dτ

)2

−1

2

h′

h2

(
dr

dτ

)2

+ r

(
dφ

dτ

)2

.

* Solution by Barton Zwiebach.
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Here h′ ≡ dh
dr and we have supressed the arguments of h and h′ to avoid clutter. Collecting

the underlined terms to the right and multiplying by h, we find

d2r

dτ2
= −1

2
h′ hc2

(
dt

dτ

)2

+
1

2

h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

. (S20.7)

(b) Dividing the expression (S20.3) for the metric by dτ2 we readily find

−c2 = −hc2
(
dt

dτ

)2

+
1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

,

and rearranging,

hc2
(
dt

dτ

)2

= c2 +
1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2

. (S20.8)

This is the most useful form of the answer. Of course, we also have(
dt

dτ

)2

=
1

h
+

1

h2c2

(
dr

dτ

)2

+
r2

hc2

(
dφ

dτ

)2

. (S20.9)

We use now (S20.8) to simplify (S20.7):

d2r

dτ2
= −1

2
h′

(
c2 +

1

h

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2
)

+
1

2

h′

h

(
dr

dτ

)2

+ rh

(
dφ

dτ

)2

.

Expanding out, the terms with ( drdτ )2 cancel and we find

d2r

dτ2
= −1

2
h′ c2 +

(
rh− 1

2
h′r2

) (
dφ

dτ

)2

. (S20.10)

This is an acceptable answer. One can simplify (S20.10) further by noting that h′ =
RS/r

2 and rh = r −RS :

d2r

dτ2
= −1

2

RSc
2

r2
+

(
r − 3

2
RS

) (
dφ

dτ

)2

. (S20.11)

In the notation of the problem statement, we have

f0(r) = −1

2

RSc
2

r2
, f1(r) = r − 3

2
RS . (S20.12)
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(c) The geodesic equation (S20.6) for µ = φ gives

d

dτ

[
gφφ

dφ

dτ

]
=

1

2

∂gλσ
∂φ

dxλ

dτ

dxσ

dτ
.

Since no metric component depends on φ, the right-hand side vanishes and we get:

d

dτ

[
r2 dφ

dτ

]
= 0 → d

dτ
L = 0 , where L ≡ r2 dφ

dτ
. (S20.13)

The quantity L is a constant of the motion, namely, it is a number independent of τ .

(d) Using (S20.13) the second-order differential equation (S20.11) for r(τ) takes the form
stated in the problem:

d2r

dτ2
= f0(r) +

f1(r)

r4
L2 ≡ H(r) , (S20.14)

where we have introduced the function H(r) (recall that L is a constant!). The differential
equation then takes the form

d2r

dτ2
= H(r) . (S20.15)

Since we are told that a circular orbit with radius r0 exists, the function r(τ) = r0

must solve this equation. Being the constant function, the left-hand side vanishes and,
consequently, the right-hand side must also vanish:

H(r0) = f0(r0) +
f1(r0)

r4
0

L2 = 0 . (S20.16)

To investigate stability we consider a small perturbation δr(τ) of the orbit:

r(τ) = r0 + δr(τ) , with δr(τ)� r0 at some initial τ .

Substituting this into (S20.15) we get, to first nontrivial approximation

d2δr

dτ2
= H(r0 + δr) ' H(r0) + δrH ′(r0) = δr H ′(r0) ,

where H ′(r) = dH(r)
dr and we used H(r0) = 0 from (S20.16). The resulting equation

d2δr(τ)

dτ2
= H ′(r0) δr(τ) , (S20.17)

is familiar because H ′(r0) is just a number. The condition of stability is that this number
is negative: H ′(r0) < 0. Indeed, in this case (S20.17) is the harmonic oscillator equation

d2x

dt2
= −ω2x , with replacements x↔ δr, t↔ τ , −ω2 ↔ H ′(r0) ,
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and the solution describes bounded oscillations. So stability requires:

Stability Condition: H ′(r0) =
d

dr

[
f0(r) +

f1(r)

r4
L2

]
r=r0

< 0 . (S20.18)

This is the answer to part (d).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For students interested in getting the famous result that orbits are stable for r > 3RS we
complete this part of the analysis below. First we evaluate H ′(r0) in (S20.18) using the
values of f0 and f1 in (S20.12):

H ′(r0) =
d

dr

[
−1

2

RSc
2

r2
+

(
1

r3
− 3RS

2r4

)
L2

]
r=r0

=
RSc

2

r3
0

− 3L2

r5
0

(r0 − 2RS) .

The inequality in (S20.18) then gives us

RSc
2 − 3L2

r2
0

(r0 − 2RS) < 0 , (S20.19)

where we multiplied by r3
0 > 0. To complete the calculation we need the value of L2 for

the orbit with radius r0. This value is determined by the vanishing of H(r0):

−1

2

RSc
2

r2
0

+ (r0 −
3

2
RS)

L2

r4
0

= 0 → L2

r2
0

=
1

2

RSc
2

(r0 − 3
2RS)

.

Note, incidentally, that the equality to the right demands that for a circular orbit r0 >
3
2RS . Substituting the above value of L2/r2

0 in (S20.19) we get:

RSc
2 − 3

2

RSc
2

(r0 − 3
2RS)

(r0 − 2RS) < 0 .

Cancelling the common factors of RSc
2 we find

1− 3

2

(r0 − 2RS)

(r0 − 3
2RS)

< 0 ,

which is equivalent to
3

2

(r0 − 2RS)

(r0 − 3
2RS)

> 1 .

For r0 >
3
2RS , we get

3(r0 − 2RS) > 2(r0 −
3

2
RS) → r0 > 3RS . (S20.20)

This is the desired condition for stable orbits in the Schwarzschild geometry.
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PROBLEM 21: PRESSURE AND ENERGY DENSITY OF MYSTERIOUS
STUFF

(a) If u ∝ 1/
√
V , then one can write

u(V + ∆V ) = u0

√
V

V + ∆V
.

(The above expression is proportional to 1/
√
V + ∆V , and reduces to u = u0 when

∆V = 0.) Expanding to first order in ∆V ,

u =
u0√

1 + ∆V
V

=
u0

1 + 1
2

∆V
V

= u0

(
1− 1

2

∆V

V

)
.

The total energy is the energy density times the volume, so

U = u(V + ∆V ) = u0

(
1− 1

2

∆V

V

)
V

(
1 +

∆V

V

)
= U0

(
1 +

1

2

∆V

V

)
,

where U0 = u0V . Then

∆U =
1

2

∆V

V
U0 .

(b) The work done by the agent must be the negative of the work done by the gas, which
is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

∆W = ∆U =
1

2

∆V

V
U0 .

Combining this with the expression for ∆W from part (b), one sees immediately
that

p = −1

2

U0

V
= − 1

2
u0 .
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PROBLEM 22: VOLUME OF A CLOSED THREE-DIMENSIONAL SPACE
(15 points)

The metric for the space that we are considering is

ds2 = R2
[
dψ2 + f2(ψ)

(
dθ2 + sin2 θdφ2

)]
,

For comparison, the metric for the surface of a sphere of radius R is given by

ds2 = R2
(
dθ2 + sin2 θdφ2

)
.

By comparing these two, one sees that the set of points described by ψ = constant
(varying θ and φ) has the same metric as a sphere of radius r = Rf(ψ). We can
save ourselves some trouble in calculating by remembering that the area of such a
spherical surface of radius r is 4πr2 = 4πR2f2(ψ).

The volume of the spherical shell shown in the problem is just the area times the
thickness. The thickness is not dψ, since ψ is only a coordinate — remember that
in curved space a coordinate and a distance are two different things. The distance is
given by the metric. Consider in this case a radial line extending from ψ to ψ+ dψ,
at constant θ and φ. Then

ds2 = R2dψ2 ,

and so the length of the line segment is ds = Rdψ.

The volume of the spherical shell is then given by

dV =
[
4πR2f2(ψ)

]
Rdψ .

We must now integrate over the range of ψ, for 0 to π. So,

V = 4πR3

∫ π

0

f2(ψ) dψ .



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 81

PROBLEM 23: GRAVITATIONAL BENDING OF LIGHT (30 points)

(a) (6 points) Note that

dr2 =
1

r2
(x dx+ y dy + z dz)

2

=
1

r2

(
x2 dx2 + y2 dy2 + z2 dz2 + 2xy dxdy + 2xz dx dz + 2yz dy dz

)
.

(S23.1)
By using this expression for (dr)2 in Eq. (P23.5), we have the full expression for ds2

written out, from which we can read off the components of gµν :

gtt = coefficient of dt2 = −c2
(

1− RSch

r

)
gxx = coefficient of dx2 = 1 +

RSch

r3
x2

gxy =
1

2
of coefficient of dxdy =

RSch

r3
xy .

(S23.2)

A number of people missed the factor of 1/2 in the value of gxy. It arises because
the general formula is written as ds2 = gµν dxµ dxν , which when expanded becomes

ds2 = gxxdx2 + gyydy2 + gzzdz
2 + gttdt

2 + gxydxdy + gyxdy dx+ . . . .

Since dxdy = dy dx, the coefficient of dxdy is gxy + gyx = 2gxy.

(b) (9 points) It will be useful to know the derivatives of r:

∂r

∂x
=

∂

∂x
(x2 + y2 + z2)1/2

=
1

2
(x2 + y2 + z2)−1/2 ∂

∂x
(x2 + y2 + z2) =

x

r
.

(S23.3)

Similarly,
∂r

∂y
=
y

r
and

∂r

∂z
=
z

r
, (S23.4)

and
dr

dλ
=
∂r

∂x

dx

dλ
+
∂r

∂y

dy

dλ
+
∂r

∂z

dz

dλ

=
x

r
.

(S23.5)



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 82

In the 2nd line I used the value of ∂r/∂x from Eq. (S23.3), and the derivatives

dx

dλ
= 1 ,

dy

dλ
=

dz

dλ
= 0 (S23.6)

that can be found from Eq. (P23.8).

Now, to expand the left-hand side of the geodesic equation:

d

dλ

{
gµν

dxν

dλ

}
=

d

dλ

{
gyy

dy

dλ
+ gyx

dx

dλ

}
=

d

dλ

{[
1 +

RSch

r3
y2

]
dy

dλ
+
RSch

r3
xy

dx

dλ

}
=

d2y

dλ2
− 3

RSch

r4

x

r
xy

dx

dλ
+
RSch

r3

dx

dλ
y

dx

dλ

=
d2y

dλ2
− 3

RSchb

r5
x2 +

RSchb

r3
.

(S23.7)

Note that I dropped a term
RSchy

2

r3

d2y

dλ2

and a term
RSch

r3
xy

d2x

dλ2
,

which is justified because the acceleration d2y
dλ2 will be proportional to G, and RSch is

proportional to G, so this term is 2nd order in G. The problem stated that we are to
work to first order in G. No points were taken off, however, from students who retained
these or other negligible terms.

Note, however, that d2y dλ2 is not negligible, and appears in the answer. This is
because dy/dλ is not actually zero, but is of order G. dy/dλ is zero for the unperturbed
path, but in reality the photon picks up a small velocity in the y-direction, caused by
the gravitational attraction of the Sun and proportional to G. d2y/dλ2 will also be
proportional to G. When dy/dλ multiplies a factor proportional to RSch, the product is
of order G2 and hence negligible. But d2y/dλ2 by itself is of order G and is not negligible.

Note on propagation of errors: I normally do not take off points for propagating errors,
so for example a student who forgot the factor of 1/2 in determining gxy would get full
credit on part (b), even though the answer would contain terms that are wrong by a factor
of 1/2. However, it seems right to me to make an exception to this rule in cases where
an error on part (a) causes the consequent answer on a later part to become trivial. For
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example, if a student described a metric in part (a) which had no dependence on r, then
many of the terms in parts (b) and (c) would not be present. In such cases I still took
off points in parts (b) and (c), because it didn’t seem fair to me to give such a student
credit for calculating these terms, when the student exhibited no such capability.

(c) (9 points)

1

2

∂

∂y
(gστ )

dxσ

dλ

dxτ

dλ
=

1

2

∂

∂y
(gxx)

(
dx

dλ

)2

+
1

2

∂

∂y
(gtt)

(
dt

dλ

)2

=
1

2

∂

∂y

(
1 +

RSch

r3
x2

)
− 1

2
c2
∂

∂y

(
1− RSch

r

)(
1

c2

)
= −1

2

(
3
RSch

r4

y

r
x2

)
− 1

2

(
RSch

r2

y

r

)

= −3

2

RSchb

r5
x2 − 1

2

RSchb

r3
.

(S23.8)

(d) (2 points) Combining Eqs. (S23.7) and (S23.8), we find

d2y

dλ2
= −3

2

RSchb

r5
x2 − 1

2

RSchb

r3
+ 3

RSchb

r5
x2 − RSchb

r3

=
3

2
RSchb

[
x2

r5
− 1

r3

]
.

(S23.9)

(e) (4 points) The final value of dy/dλ is given by Eq. (P23.9), while the final value of
dx/dλ will be equal to 1, at least up to possible corrections proportional to G. Thus,
the final velocity will make an angle α relative to the horizontal, where

tanα =
dy/dλ|final

dx/dλ|final

=

∫ ∞
−∞

d2y

dλ2
dλ .

Since tanα will be proportional to G, the small angle approximation tanα = α will
apply, and

α ≈
∫ ∞
−∞

d2y

dλ2
dλ . (S23.10)
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Then, using Eqs. (S23.9) and combining with Eqs. (P23.4) and (P23.8),

α =
3

2
RSchb

∫ ∞
−∞

[
x2

r5
− 1

r3

]
dλ

=
3

2
RSchb

∫ ∞
−∞

[
λ2

(λ2 + b2)5/2
− 1

(λ2 + b2)3/2

]
dλ .

(S23.11)

You were not asked to carry out these integrals, but using the table of integrals given
with the problem, one finds

α =
3

2
RSchb

[
2

3b2
− 2

b2

]
= −2RSch

b
= −4GM

c2b
. (S23.12)

The minus sign indicates that the deflection is downward, as one would expect.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

Physics 8.286: The Early Universe Quiz Date: November 5, 2018
Prof. Alan Guth

QUIZ 2
Reformatted to Remove Blank Pages

Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (4 points) Which of the following statements about deuterium is NOT true? Choose
one.

(i) The abundance of deuterium in the universe tends to decrease with time, because
deuterium is very easily destroyed in stars.

(ii) The most promising way to find the primordial value of deuterium abundance is
to look at the spectra of distant quasars to estimate the abundance of deuterium
within the quasar itself.

(iii) The Lyman-α transition in deuterium corresponds to a slightly different wave-
length than the Lyman-α transition in hydrogen.

(iv) Deuterium plays an important role in forming helium in the early universe
mainly by producing tritium or 3He.

(b) (6 points) In Chapter 5 of The First Three Minutes, Steven Weinberg describes the
first three minutes of the history of the universe. Choose two correct statements
about the first three minutes. You can assume the fraction by weight of primordial
helium is 26 percent. (3 points for each right answer, no penalty for guessing.)

(i) When the temperature of the universe was about 1010 ◦K (t ∼ 1 sec), neutrinos
and antineutrinos started to behave as free particles, no longer having significant
interactions with electrons, positrons, or photons.

(ii) After the neutrinos decoupled from the photons, the temperature of the neutri-
nos was higher than that of the photons because neutrinos interacted less with
other particles as the universe expanded.

(iii) Most of the atoms heavier than helium were made through nucleosynthesis dur-
ing the first three minutes, and this is why we call this period the era of nucle-
osynthesis.

(iv) After the first three minutes, there were about 7 times more protons than neu-
trons, and the ratio of protons to neutrons has been almost preserved until
today.

(v) The protons and neutrons became decoupled from the photons after the first
three minutes, because the number densities of protons and neutrons were de-
creased by the formation of helium, and so their interactions with photons be-
came negligible.

(vi) The observed abundance of helium in a galaxy today is much larger than the
abundance of primordial helium, because helium is continuously formed inside
stars by nuclear fusion.
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(c) (4 points) The cosmic microwave background radiation was first discovered by Pen-
zias and Wilson in 1964. However, according to Chapter 6 of The First Three
Minutes, a team at the MIT Radiation Laboratory led by Robert Dicke was able to
set an upper limit on any isotropic extraterrestrial radiation background, showing
that the equivalent temperature was less than 20 ◦K at wavelengths of 1.00, 1.25,
and 1.50 centimeters. This measurement was made in the

(i) 1920s (ii) 1930s (iii) 1940s (iv) 1950s (v) 1960s

(d) (5 points) A free neutron can radioactively decay into a proton, plus two other
particles. What are these particles? Give the charge, baryon number, and lepton
number for each of these particles, verifying that each of these quantities is conserved
in this process.

(e) (6 points) In Chapter 8 of Ryden’s Introduction to Cosmology, she discusses three
ways to measure the dark matter in clusters. Give a brief, qualitative description of
TWO of them. (If you give three descriptions, only the first two will be graded!)

— End of Problem 1. —
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PROBLEM 2: EVOLUTION OF A FRIEDMANN–ROBERTSON–
WALKER UNIVERSE (20 points)

(a) (10 points) The evolution of a homogeneous isotropic model of the universe, known as
a Friedmann–Robertson-Walker (FRW) universe, can be described by the following
equations: (

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (2.1)

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (2.2)

and

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (2.3)

These equations are not independent, but any two can in fact be used to derive the
third. For example, in Problem Set 6, you were asked to use Eqs. (2.1) and (2.3) to
derive Eq. (2.2). Here you are asked to show that Eqs. (2.1) and (2.2) can be used
to derive Eq. (2.3).

(b) (6 points) If the universe were flat, expanding, and filled with a material for which

p = −ρc2 , (2.4)

what would be the form of the scale factor a(t)?

(c) (4 points) In the universe described in part (b), suppose that, at t = 0, my friend
Bob emits a photon in my direction. Show that if Bob is more than a certain distance
away from me at the time of emission, t = 0, then the photon will never reach me.
What is this distance?

— End of Problem 2. —
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PROBLEM 3: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-
VERSE (35 points)

The following problem was Problem 2 on Problem Set 4.

The equations describing the evolution of an open, matter-dominated universe were
given in Lecture Notes 4 as

ct = α (sinh θ − θ)

and
a√
κ

= α (cosh θ − 1) ,

where α is a constant with units of length. The following mathematical identities, which
you should know, may also prove useful on parts (e) and (f):

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . . .

(a) (5 points) Find the Hubble expansion rate H as a function of α and θ.

(b) (5 points) Find the mass density ρ as a function of α and θ.

(c) (5 points) Find the mass density parameter Ω as a function of α and θ.

(d) (6 points) Find the physical value of the horizon distance, `p,horizon, as a function of
α and θ.

(e) (7 points) For very small values of t, it is possible to use the first nonzero term of a
power-series expansion to express θ as a function of t, and then a as a function of t.
Give the expression for a(t) in this approximation. The approximation will be valid
for t� t∗. Estimate the value of t∗.

(f) (7 points) Even though these equations describe an open universe, one still finds that
Ω approaches one for very early times. For t� t∗ (where t∗ is defined in part (e)),
the quantity 1 − Ω behaves as a power of t. Find the expression for 1 − Ω in this
approximation.

— End of Problem 3. —
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PROBLEM 4: RADIAL GEODESICS IN A CLOSED UNIVERSE (20 points)

As shown in the formula sheets, we can describe a closed universe by choosing k = 1,
and then using coordinates (t, r, θ, φ), with metric

ds2 ≡ −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
, (4.1)

or by using coordinates (t, ψ, θ, φ), with metric

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + a2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
. (4.2)

The connection between the two coordinate systems is given by

r = sinψ . (4.3)

The general spacetime geodesic equation can be written as

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
. (4.4)

(a) (7 points) Using the coordinates (t, ψ, θ, φ) and the metric of Eq. (4.2), compute
explicitly the geodesic equation for µ = ψ. By “compute explicitly”, I mean that
gµν should be replaced by the relevant expressions from Eq. (4.2), and that the sums
over indices should be written out, including only the nonzero terms.

(b) (7 points) Using instead the coordinates (t, r, θ, φ), compute explicitly the geodesic
equation for µ = r.

(c) (6 points) Are the results from parts (a) and (b) both valid, or is one valid and
the other not? If you believe that they are both valid, use Eq. (4.3) to show that
they are equivalent. If you believe that only one is valid, state which one is valid,
and explain why the other is not. (4 points will be given for showing the correct
understanding of this problem, with 2 points allocated to completing the algebra
needed to demonstrate your answer.)

— End of Problem 4. —
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Problem Maximum Score Initials

1 25

2 20

3 35

4 20

TOTAL 100
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DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.
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KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-

VERSE:

Hubble’s Law: v = Hr ,

where v = recession velocity of a distant object, H = Hubble

expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,

where `p(t) is the physical distance between any two objects, a(t)

is the scale factor, and `c is the coordinate distance between the

objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight

lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.
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SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (4 points) Which of the following statements about deuterium is NOT true? Choose
one.

(i) The abundance of deuterium in the universe tends to decrease with time, because
deuterium is very easily destroyed in stars.

(ii) The most promising way to find the primordial value of deuterium abundance is
to look at the spectra of distant quasars to estimate the abundance of deuterium
within the quasar itself.

(iii) The Lyman-α transition in deuterium corresponds to a slightly different wave-
length than the Lyman-α transition in hydrogen.

(iv) Deuterium plays an important role in forming helium in the early universe
mainly by producing tritium or 3He.

[Comment: The most promising way to find the primordial value of the deuterium
abundance is to look at the spectra of distant quasars to estimate the abundance of
deuterium in intergalactic gas clouds that lie between the quasars and us.]

(b) (6 points) In Chapter 5 of The First Three Minutes, Steven Weinberg describes the
first three minutes of the history of the universe. Choose two correct statements
about the first three minutes. You can assume the fraction by weight of primordial
helium is 26 percent. (3 points for each right answer, no penalty for guessing.)

(i) When the temperature of the universe was about 1010 ◦K (t ∼ 1 sec), neutrinos

and antineutrinos started to behave as free particles, no longer having significant
interactions with electrons, positrons, or photons.

(ii) After the neutrinos decoupled from the photons, the temperature of the neutri-
nos was higher than that of the photons because neutrinos interacted less with
other particles as the universe expanded.

(iii) Most of the atoms heavier than helium were made through nucleosynthesis dur-
ing the first three minutes, and this is why we call this period the era of nucle-
osynthesis.
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(iv) After the first three minutes, there were about 7 times more protons than neu-

trons, and the ratio of protons to neutrons has been almost preserved until
today.

(v) The protons and neutrons became decoupled from the photons after the first
three minutes, because the number densities of protons and neutrons were de-
creased by the formation of helium, and so their interactions with photons be-
came negligible.

(vi) The observed abundance of helium in a galaxy today is much larger than the
abundance of primordial helium, because helium is continuously formed inside
stars by nuclear fusion.

[Comment: The statement (i) is described in Chapter 5 of Weinberg’s book, and
it has also been discussed in class. The correctness of statement (iv) can also be
seen from Weinberg’s Chapter 5, which says that the fraction of neutrons after the
first three minutes is around 14%, and it goes down to around 13% “a little later”.
Thus there were about 7 times more protons compared to neutrons. Weinberg also
explains that most of the neutrons present at this time immdiately combined with
protons to form helium, which causes the ratio to be nearly constant until today. If
you did not remember Weinberg’s numbers, the statement that the fraction by weight
of primordial helium is 26% should allow you to determine the neutron to proton
ratio, provided that you remember that the helium nucleus consists of 2 protons and
two neutrons, that the mass of the proton and neutron are about equal, and that the
remaining 74% of the matter is essentially hydrogen, with no neutrons. Thus helium
is very nearly half protons and half neutrons by weight, so the neutrons must be
about 13% of the matter in the universe. (Note that we are talking about fractions of
the total “baryonic” matter, which does not include the dark matter.) (ii) is clearly
false, because the temperature of neutrinos becomes lower than that of photons. (iii)
is clearly false, because most atoms heavier than helium were made much later in
the history of the universe, in the interiors of stars. (v) is false because protons
did not decouple from photons until about 350,000 years, and it happened because
the plasma of protons and electrons combined to form neutral hydrogen. (vi) is false
because most of the helium in the universe today is primordial. Ryden points out,
for example, that the abundance of helium in the Sun’s atmosphere is only about
28%. Weinberg states, near the end of Chapter 5, that “the 20-30 percent helium
abundance could not have been created recently without liberating enormous amounts
of radiation that we do not observe.”]

(c) (4 points) The cosmic microwave background radiation was first discovered by Pen-
zias and Wilson in 1964. However, according to Chapter 6 of The First Three
Minutes, a team at the MIT Radiation Laboratory led by Robert Dicke was able to
set an upper limit on any isotropic extraterrestrial radiation background, showing
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that the equivalent temperature was less than 20 ◦K at wavelengths of 1.00, 1.25,
and 1.50 centimeters. This measurement was made in the

(i) 1920s (ii) 1930s (iii) 1940s (iv) 1950s (v) 1960s

(d) (5 points) A free neutron can radioactively decay into a proton, plus two other
particles. What are these particles? Give the charge, baryon number, and lepton
number for each of these particles, verifying that each of these quantities is conserved
in this process.

Answer:

The neutron decays through the reaction

n→ p+ e− + ν̄e .

The quantum numbers of these particles can be described by the following table:

Particle Charge
Baryon
Number

Lepton
Number

Neutron (n) 0 1 0

Proton (p) +e 1 0

Electron (e−) -e 0 1

Anti-electron-neutrino (ν̄e) 0 0 -1

Thus, the total charge of the final state is zero, the total baryon number is 1, and the
total lepton number is zero, in all cases matching the initial value of these quantities.

(e) (6 points) In Chapter 8 of Ryden’s Introduction to Cosmology, she discusses three
ways to measure the dark matter in clusters. Give a brief, qualitative description of
TWO of them. (If you give three descriptions, only the first two will be graded!)

Answer: You should have given two of the following three items.

1) Virial theorem: The virial theorem relates the total kinetic energy of a steady-
state cluster to is gravitational potential energy. Since the kinetic energy is
proportional to the mass M of the cluster, while the potential energy is propor-
tional to M2, the relation will hold for only one value of M . By measuring the
velocity dispersion (root mean square of the radial galaxy velocities relative to
the mean radial velocity) and the size of the cluster, the mass can be inferred.
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2) Hot, x-ray emitting gases: By measuring the x-rays emitted by the cluster, it is
possible to model the density, temperature, and composition of the hot gas within
the cluster (intracluster gas). By assuming that the gas is in hydrostatic equi-
librium — i.e., by assuming that the pressure gradients balance the gravitational
forces — one can infer the gravitational field, and hence the total mass.

3) Gravitational lensing: If one can find a galaxy behind the cluster, so that the
image of the galaxy is gravitationally lensed, then the mass of the galaxy can be
inferred by the degree to which the galaxy is lensed.

— End of Problem 1. —
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PROBLEM 2: EVOLUTION OF A FRIEDMANN–ROBERTSON–
WALKER UNIVERSE (20 points)

(a) (10 points) The evolution of a homogeneous isotropic model of the universe, known as
a Friedmann–Robertson-Walker (FRW) universe, can be described by the following
equations: (

ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, (2.1)

ä = −4π

3
G

(
ρ+

3p

c2

)
a , (2.2)

and

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (2.3)

These equations are not independent, but any two can in fact be used to derive the
third. For example, in Problem Set 6, you were asked to use Eqs. (2.1) and (2.3) to
derive Eq. (2.2). Here you are asked to show that Eqs. (2.1) and (2.2) can be used
to derive Eq. (2.3).

Answer:

We can rewrite Eq. (2.1) as

ȧ2 =
8π

3
Gρa2 − kc2 ,

which can then be differentiated to give

2ȧä =
16π

3
Gρaȧ+

8π

3
Gρ̇a2 .

The above equation can be solved for ρ̇, giving

ρ̇ = −2
ȧ

a
ρ+

3

4πG

äȧ

a2
.

Then if Eq. (2.2) is used to replace ä, one finds

ρ̇ = −2
ȧ

a
ρ− ȧ

a

(
ρ+

3p

c2

)
= −3

ȧ

a

(
ρ+

p

c2

)
.
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(b) (6 points) If the universe were flat, expanding, and filled with a material for which

p = −ρc2 , (2.4)

what would be the form of the scale factor a(t)?

Answer:

If p = −ρc2, then Eq. (2.3) implies that

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
= 0 ,

so ρ is a constant. Then, since k = 0 for a flat universe, Eq. (2.1) implies(
ȧ

a

)2

=
8π

3
Gρ = const ,

so

ȧ = ±
√

8π

3
Gρa .

Only the positive option describes an expanding universe, so

ȧ =

√
8π

3
Gρa =⇒ a(t) = b e

√
8π
3 Gρ t ,

where b is an arbitrary constant.

(c) (4 points) In the universe described in part (b), suppose that, at t = 0, my friend
Bob emits a photon in my direction. Show that if Bob is more than a certain distance
away from me at the time of emission, t = 0, then the photon will never reach me.
What is this distance?

Answer:

The metric for this universe is

ds2 = −c2 dt2 + b2e2Ht d~x2 ,

where

H =

√
8π

3
Gρ .

Light pulses travel with ds2 = 0, so the coordinate speed of light, for a pulse traveling
along the x axis, is given by

dx

dt
=

c

beHt
.
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So the coordinate distance that the pulse will travel between time 0 and some arbi-
trary time t is given by

`coord(t) =

∫ t

0

dx

dt
(t′) dt′ =

c

b

∫ t

0

e−Ht
′
dt′ =

c

bH

(
1− e−Ht

)
.

Therefore, even if we let t→∞, the coordinate distance traveled by the light pulse
will always be less than c/(bH). Since I am stationary in the comoving coordinates,
if the initial coordinate distance between Bob and me was more than c/(bH), the
light pulse will never reach me. Since the initial time was t = 0, with a(0) = b,

the light pulse will never reach me if the initial physical
distance between Bob and me was more than cH−1,
which is called the Hubble length.

[Comment: many students tried to use the formulas that we have learned for the
horizon distance, but that is not the same thing. The horizon distance is the present
proper distance to the most distant objects from which light has had time to reach us,
since t = 0. This is often called the “particle horizon,” and clearly it is determined
solely by the history of the universe, up to the present. The current question concerns
whether a photon emitted at the present time by Bob will ever reach me. This question
is determined solely by the future evolution of the universe, and is a completely
different question from the particle horizon issue. It is also called a horizon, however.
The distance beyond which light will never reach me is called the “event horizon.”]

— End of Problem 2. —
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PROBLEM 3: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-
VERSE (35 points)

The following problem was Problem 2 on Problem Set 4.

The equations describing the evolution of an open, matter-dominated universe were
given in Lecture Notes 4 as

ct = α (sinh θ − θ)
and a√

κ
= α (cosh θ − 1) ,

where α is a constant with units of length. The following mathematical identities, which
you should know, may also prove useful on parts (e) and (f):

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . . .

(a) (5 points) Find the Hubble expansion rate H as a function of α and θ.

Answer:

Using the chain rule, the standard formula for the Hubble expansion rate can be
rewritten as

H(θ) =
1

a

da

dθ

dθ

dt
.

The parametric equations for a and t for an open, matter-dominated universe are
given by

ct = α (sinh θ − θ)
a√
κ

= α (cosh θ − 1) .

Recall that the hyperbolic trigonometric functions are differentiated as

d

dθ
sinh θ = cosh θ ,

d

dθ
cosh θ = sinh θ .

So, differentiating the parametric equations,

da

dθ
= α
√
k sinh θ ,

dt

dθ
=
α

c
(cosh θ − 1) =

1

dθ/dt
.
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Then

H(θ) =

[
1√

κα(cosh θ − 1)

] [
α
√
κ sinh θ

] [ c

α(cosh θ − 1)

]

=
c sinh θ

α(cosh θ − 1)2
.

(b) (5 points) Find the mass density ρ as a function of α and θ.

Answer:

This problem can be attacked by at least three different methods. While you were
expected to use only one, we will show all three.

(i) One way to find ρ is to use

H2 =
8π

3
Gρ− kc2

a2
.

This is usually the safest method to find ρ for a cosmological model, since the
above equation is one of the general Friedmann equations. The equation requires
that the universe be homogeneous and isotropic, but it is valid for any form of
matter. By contrast, the two other methods that will be shown below are valid
only for “matter-dominated” universes (i.e., universes that are dominated by
nonrelativistic matter, for which the pressure is always negligible). One can
rewrite this equation as

8π

3
Gρ = H2 +

kc2

a2
.

Recalling that we described open universes by using κ ≡ −k, this can be rewrit-
ten as

8π

3
Gρ = H2 − κc2

a2
.

Replacing H by the answer in part (a) and a by its parametric equation, one
finds

8π

3
Gρ =

c2 sinh2 θ

α2(cosh θ − 1)4
− κc2

α2κ(cosh θ − 1)2

=
c2

α2(cosh θ − 1)4
[
sinh2 θ − (cosh θ − 1)2

]
.

Now make use of the hypertrigonometric identity

cosh2 θ − sinh2 θ = 1
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to simplify:

sinh2 θ − (cosh θ − 1)2 = sinh2 θ − cosh2 θ + 2 cosh θ − 1

= 2(cosh θ − 1) ,

so
8π

3
Gρ =

2c2

α2(cosh θ − 1)3
.

Dividing both sides of the equation by (8π/3)G, one finds

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(ii) Use the definition of α,

α ≡ 4π

3

Gρã3

c2
,

from Eq. (4.17) of Lecture Notes 4, with Eq. (4.39),

ã(t) ≡ a(t)√
κ
.

One can then solve for ρ, finding

ρ =
3

4π

ακ3/2c2

Ga3
.

By substituting for a(θ) by using the parametric equation, one finds the final
result:

ρ =
3

4π

ακ3/2c2

G

1

α3κ3/2(cosh θ − 1)3

=
3c2

4πGα2(cosh θ − 1)3
.

(iii) ρ can also be found from ä = −(4π/3)Gρa, as long as we know that the universe
is matter-dominated. (Be careful, however, about applying this formula in other
situations: if the pressure cannot be neglected, then this equation has to be
modified.) To evaluate ä, again use the chain rule. Starting with ȧ,

ȧ =
da

dθ

dθ

dt
= α
√
κ sinh θ

c

α(cosh θ − 1)
=
c
√
κ sinh θ

cosh θ − 1
.
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Then

ä =
dȧ

dθ

dθ

dt
=

d

dθ

[
c
√
κ sinh θ

cosh θ − 1

]
c

α(cosh θ − 1)

=
c2
√
κ

α(cosh θ − 1)

[
cosh θ

cosh θ − 1
− sinh2 θ

(cosh θ − 1)2

]
=

c2
√
κ

α(cosh θ − 1)3
[
cosh θ(cosh θ − 1)− sinh2 θ

]
=

c2
√
κ

α(cosh θ − 1)3
(1− cosh θ) = − c2

√
κ

α(cosh θ − 1)2
.

So

ä = −4π

3
Gρa =⇒ − c2

√
κ

α(cosh θ − 1)2
= −4π

3
Gρα
√
κ(cosh θ − 1) ,

and

ρ =
3c2

4πGα2(cosh θ − 1)3
.

(c) (5 points) Find the mass density parameter Ω as a function of α and θ.

Answer:

The critical mass density satisfies the cosmological evolution equations for k = 0, so

H2 =
8π

3
Gρc .

Then

Ω ≡ ρ

ρc
=

8πGρ

3H2
.

Now replace H by the answer to part (a), and ρ by the answer to part (b):

Ω =
8πG

3

[
3

4π

c2

Gα2(cosh θ − 1)3

] [
α2(cosh θ − 1)4

c2 sinh2 θ

]
= 2

cosh θ − 1

sinh2 θ
= 2

cosh θ − 1

cosh2 θ − 1

= 2
cosh θ − 1

(cosh θ + 1)(cosh θ − 1)
=

2

cosh θ + 1
.
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The answer can be written even more compactly, if one wishes, by using a further
hypertrigonometric identity:

Ω =
2

cosh θ + 1
=

1

cosh2 1
2θ

= sech2 1

2
θ .

(d) (6 points) Find the physical value of the horizon distance, `p,horizon, as a function of
α and θ.

Answer:

The basic formula that determines the physical value of the horizon distance is given
by Eq. (4.7) of the lecture notes:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′ .

The complication here is that a is given as a function of θ, rather than t. The
problem is handled, however, by a simple change of integration variables. One can
change the integral over t′ to an integral over θ′, provided that one replaces

dt′ → dt′

dθ′
dθ′ =

α

c
(cosh θ′ − 1)dθ′ .

One must also re-express the limits of integration in terms of θ. So

`p,horizon(t) = a
(
θ(t)

) ∫ θ(t)

0

c

a(θ′)

dt′

dθ′
dθ′

= α
√
κ
(

cosh θ(t)− 1
) ∫ θ(t)

0

c

α
√
κ(cosh θ′ − 1)

α

c
(cosh θ′ − 1) dθ′ .

= α
(

cosh θ(t)− 1
) ∫ θ(t)

0

dθ′ = α θ(t)
(

cosh θ(t)− 1
)
.

(e) (7 points) For very small values of t, it is possible to use the first nonzero term of a
power-series expansion to express θ as a function of t, and then a as a function of t.
Give the expression for a(t) in this approximation. The approximation will be valid
for t� t∗. Estimate the value of t∗.

Answer:

The key to this problem is the use of power series expansions. When this problem
appeared as a quiz problem in 1992, I was rather surprised to find that many of the
students seemed very inexperienced in this technique. It is a very useful method of



8.286 QUIZ 2 SOLUTIONS, FALL 2018 p. 13

approximation, so I strongly urge you to learn it if you don’t know it already. In
general, any sufficiently smooth function f(x) can be expanded about the point x0
by the series

f(x) = f(x0) +
1

1!
f ′(x0)(x− x0) +

1

2!
f ′′(x0)(x− x0)2

+
1

3!
f ′′′(x0)(x− x0)3 + . . . ,

where the prime is used to denote a derivative. In particular, the exponential, sinh,
and cosh functions can be expanded about θ = 0 by the formulas

eθ = 1 +
θ

1!
+
θ2

2!
+
θ3

3!
+ . . .

sinh θ = θ +
θ3

3!
+
θ5

5!
+
θ5

7!
. . .

cosh θ = 1 +
θ2

2!
+
θ4

4!
+
θ6

6!
+ . . . .

For this problem, we expand the parametric equations for a(θ) and t(θ), keeping the
first nonvanishing term in the power series expansions:

t =
α

c
(sinh θ − θ) =

α

c

(
θ3

3!
+ . . .

)
a = α

√
κ(cosh θ − 1) = α

√
κ

(
θ2

2!
+ . . .

)
.

The first expression can be solved for θ, giving

θ ≈
(

6ct

α

)1/3

,

which can be substituted into the second expression to give

a ≈ 1

2
α
√
κ

(
6ct

α

)2/3

.

The power series expansions for the sinh and cosh are valid whenever the terms left
out are much smaller than the last term kept, which happens when θ � 1. Given
the above relation between θ and t, this condition is equivalent to

t� α

6c
.
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Thus,

t∗ ≈ α

6c
, or t∗ ≈ α

c
.

Since there is no precise meaning to the statement that an approximation is valid,
there is no precise value for t∗.

(f) (7 points) Even though these equations describe an open universe, one still finds that
Ω approaches one for very early times. For t� t∗ (where t∗ is defined in part (e)),
the quantity 1 − Ω behaves as a power of t. Find the expression for 1 − Ω in this
approximation.

Answer:

From part (c), the expression for Ω is given by

Ω =
2

cosh θ + 1
.

So,

1− Ω = 1− 2

cosh θ + 1
=

cosh θ − 1

cosh θ + 1
.

Expanding numerator and denominator in power series,

1− Ω ≈
θ2

2! + θ4

4! + . . .

2 + θ2

2! + . . .
.

Keeping only the leading terms,

1− Ω ≈
θ2

2

2
=

1

4
θ2 ,

so

1− Ω ≈ 1

4

(
6ct

α

)2/3

.

This result shows that the deviation of Ω from 1 is amplified with time. This fact
leads to a conundrum called the “flatness problem”, which will be discussed later in
the course.

A common mistake (very minor) was to keep extra terms, especially in the denom-
inator. Keeping extra terms allows a higher degree of accuracy, so there is nothing
wrong with it. However, one should always be sure to keep all terms of a given order,
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since keeping only a subset of terms may or may not increase the accuracy. In this
case, an extra term in the denominator can be rewritten as a term in the numerator:

θ2

2!

2 + θ2

2!

=
1

4

θ2

1 + θ2

4

=
1

4
θ2
(

1− θ2

4
+ . . .

)
=

1

4
θ2 − 1

16
θ4 + . . . ,

where I used the expansion

1

1 + x
= 1− x+ x2 − x3 + x4 + . . . .

Thus, the extra term in the denominator is equivalent to a term in the numerator
of order θ4, but other terms proportional to θ4 have been dropped. So, it is not
worthwhile to keep the 2nd term in the expansion of the denominator.

— End of Problem 3. —
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PROBLEM 4: RADIAL GEODESICS IN A CLOSED UNIVERSE (20 points)

As shown in the formula sheets, we can describe a closed universe by choosing k = 1,
and then using coordinates (t, r, θ, φ), with metric

ds2 ≡ −c2 dτ2 = −c2 dt2 + a2(t)

{
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)}
, (4.1)

or by using coordinates (t, ψ, θ, φ), with metric

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + a2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
. (4.2)

The connection between the two coordinate systems is given by

r = sinψ . (4.3)

The general spacetime geodesic equation can be written as

d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
. (4.4)

(a) (7 points) Using the coordinates (t, ψ, θ, φ) and the metric of Eq. (4.2), compute
explicitly the geodesic equation for µ = ψ. By “compute explicitly”, I mean that
gµν should be replaced by the relevant expressions from Eq. (4.2), and that the sums
over indices should be written out, including only the nonzero terms.

Answer:

Since the metric is diagonal, only ν = ψ contributes to the sum over ν. Similarly
λ must equal σ, and the only nonzero values of ∂ψgλσ are when λ = σ = θ and
λ = σ = φ. So Eq. (4.4) becomes

d

dτ

{
gψψ

dψ

dτ

}
=

1

2

[
∂gθθ
∂ψ

(
dθ

dτ

)2

+
∂gφφ
∂ψ

(
dφ

dτ

)2
]
.

Using gψψ = a2(t), gθθ = a2(t) sin2 ψ, and gφφ = a2(t) sin2 ψ sin2 θ, the equation
becomes

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
. (4.5)
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You were not asked to expand the left-hand-side, but some of you did. If you do
expand the left-hand side, it is important to remember that a(t) depends on t and t
depends on τ , so the equation becomes

a2(t)
d2ψ

dτ2
+ 2aȧ

dt

dτ

dψ

dτ
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

or
d2ψ

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dψ

dτ
= sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

(b) (7 points) Using instead the coordinates (t, r, θ, φ), compute explicitly the geodesic
equation for µ = r.

Answer:

Again the equation simplifies significantly, since gµν is diagonal. On the right-hand
side, only 3 of the 4 possible values of λ = σ contribute, as ∂rgtt = 0. So,

d

dτ

{
grr

dr

dτ

}
=

1

2

[
∂grr
∂r

(
dr

dτ

)2

+
∂gθθ
∂r

(
dθ

dτ

)2

+
∂gφφ
∂r

(
dφ

dτ

)2
]
.

Now we use

grr =
a2(t)

1− r2
, gθθ = a2(t)r2 , gφφ = a2(t)r2 sin2 θ ,

which allows us to rewrite the equation as

d

dτ

{
a2(t)

1− r2
dr

dτ

}
=

1

2

[
2ra2(t)

(1− r2)2

(
dr

dτ

)2

+ 2ra2(t)

(
dθ

dτ

)2

+ 2ra2(t) sin2 θ

(
dφ

dτ

)2
]
,

or

d

dτ

{
a2(t)

1− r2
dr

dτ

}
= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

(4.6)
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Again you were not asked to expand the left-hand side, but if the left-hand side is
expanded, one must remember that a(t) and r both depend on τ . So

a2(t)

1− r2
d2r

dτ2
+

2ra2(t)

(1− r2)2

(
dr

dτ

)2

+
2aȧ

1− r2
dt

dτ

dr

dτ

= ra2(t)

[
1

(1− r2)2

(
dr

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

Rearranging terms, the equation can be simplified to

d2r

dτ2
+ 2

(
ȧ

a

)
dt

dτ

dr

dτ

= r

{
− 1

(1− r2)

(
dr

dτ

)2

+ (1− r2)

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]}

.

(c) (6 points) Are the results from parts (a) and (b) both valid, or is one valid and
the other not? If you believe that they are both valid, use Eq. (4.3) to show that
they are equivalent. If you believe that only one is valid, state which one is valid,
and explain why the other is not. (4 points will be given for showing the correct
understanding of this problem, with 2 points allocated to completing the algebra
needed to demonstrate your answer.)

Answer:

Both answers are valid, since they are both correct forms of the geodesic equation,
in different coordinate systems. To see that they are equivalent, we can start with
the equation for r, Eq. (4.6), and substitute

r = sinψ =⇒ dr

dτ
= cosψ

dψ

dτ
=⇒ 1

1− r2
dr

dτ
=

1

cosψ

dψ

dτ
.

So Eq. (4.6) becomes

d

dτ

{
a2(t)

cosψ

dψ

dt

}
= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.

Partially expanding the left-hand side,

1

cosψ

d

dτ

{
a2(t)

dψ

dt

}
+

a2

cos2 ψ
sinψ

(
dψ

dτ

)2

= a2 sinψ

[
1

cos2 ψ

(
dψ

dτ

)2

+

(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
.
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The terms proportional to (dψ/dτ)2 can be seen to cancel, and then multiplication
of the equation by cosψ gives

d

dτ

{
a2(t)

dψ

dτ

}
= a2(t) sinψ cosψ

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

which is identical to Eq. (4.5).

— End of Problem 4. —
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Problem Maximum Score Initials

1 25

2 20

3 35

4 20

TOTAL 100
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QUIZ 2 FORMULA SHEET

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved
λemitted

=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.
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KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-

VERSE:

Hubble’s Law: v = Hr ,

where v = recession velocity of a distant object, H = Hubble

expansion rate, and r = distance to the distant object.

Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,

where `p(t) is the physical distance between any two objects, a(t)

is the scale factor, and `c is the coordinate distance between the

objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight

lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.
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SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ
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QUIZ DATE: Wedneday, December 5, 2018, during the normal class time.

COVERAGE: Lecture Notes 6 (pp. 12–end), Lecture Notes 7 and 8. Problem Sets 7

and 8; Steven Weinberg, The First Three Minutes, Chapter 8 and the Afterword;

Barbara Ryden, Introduction to Cosmology, Chapters 9 (The Cosmic Microwave

Background) and 11 (Inflation and the Very Early Universe); Alan Guth, Inflation

and the New Era of High-Precision Cosmology,

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf .

One of the problems on the quiz will be taken verbatim (or at least almost

verbatim) from either the homework assignments, or from the starred

problems from this set of Review Problems. The starred problems are the

ones that I recommend that you review most carefully: Problems 2, 6, 8, 11, 12, 15,

17, and 18.

PURPOSE: These review problems are not to be handed in, but are being made avail-

able to help you study. They come mainly from quizzes in previous years. In some

cases the number of points assigned to the problem on the quiz is listed — in all

such cases it is based on 100 points for the full quiz.

In addition to this set of problems, you will find on the course web page the actual

quizzes that were given in 1994, 1996, 1998, 2000, 2002, 2004, 2007, 2009, 2011, 2013,

and 2016. The relevant problems from those quizzes have mostly been incorporated

into these review problems, but you still may be interested in looking at the quizzes,

just to see how much material has been included in each quiz. The coverage of the

upcoming quiz will not necessarily match the coverage of any of the quizzes from

previous years. The coverage for each quiz in recent years is usually described at the

start of the review problems, as I did here.

REVIEW SESSION AND OFFICE HOURS: To help you study for the quiz,

Honggeun Kim will hold a review session on Sunday, December 2, at 8:00 pm, in

Room 4-153. In addition, both Honggeun Kim and I will be moving our office hours

for the two last weeks of the term. I (Alan) will hold my office hours on Mondays

(December 3 and 10) at 7:30 pm in my office, 6-322, and Honggeun will hold his

office hours on Tuesdays (December 4 and 11) in Room 8-308.

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf


8.286 QUIZ 3 REVIEW PROBLEMS, FALL 2018 p. 2

INFORMATION TO BE GIVEN ON QUIZ:

For the third quiz, the following information will be made available to you:

DOPPLER SHIFT (For motion along a line):

z = v/u (nonrelativistic, source moving)

z =
v/u

1− v/u
(nonrelativistic, observer moving)

z =

√
1 + β

1− β
− 1 (special relativity, with β = v/c)

COSMOLOGICAL REDSHIFT:

1 + z ≡ λobserved

λemitted
=
a(tobserved)

a(temitted)

SPECIAL RELATIVITY:

Time Dilation Factor:

γ ≡ 1√
1− β2

, β ≡ v/c

Lorentz-Fitzgerald Contraction Factor: γ

Relativity of Simultaneity:
Trailing clock reads later by an amount β`0/c .

Energy-Momentum Four-Vector:

pµ =

(
E

c
, ~p

)
, ~p = γm0~v , E = γm0c

2 =

√
(m0c2)

2
+ |~p|2 c2 ,

p2 ≡ |~p|2 −
(
p0
)2

= |~p|2 − E2

c2
= − (m0c)

2
.

KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNI-
VERSE:

Hubble’s Law: v = Hr ,
where v = recession velocity of a distant object, H = Hubble
expansion rate, and r = distance to the distant object.
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Present Value of Hubble Expansion Rate (Planck 2018):

H0 = 67.66± 0.42 km-s−1-Mpc−1

Scale Factor: `p(t) = a(t)`c ,

where `p(t) is the physical distance between any two objects, a(t)

is the scale factor, and `c is the coordinate distance between the

objects, also called the comoving distance.

Hubble Expansion Rate: H(t) =
1

a(t)

da(t)

dt
.

Light Rays in Comoving Coordinates: Light rays travel in straight

lines with physical speed c relative to any observer. In Cartesian

coordinates, coordinate speed
dx

dt
=

c

a(t)
. In general, ds2 =

gµνdxµdxν = 0.

Horizon Distance:

`p,horizon(t) = a(t)

∫ t

0

c

a(t′)
dt′

=

{
3ct (flat, matter-dominated),

2ct (flat, radiation-dominated).

COSMOLOGICAL EVOLUTION:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
, ä = −4π

3
G

(
ρ+

3p

c2

)
a ,

ρm(t) =
a3(ti)

a3(t)
ρm(ti) (matter), ρr(t) =

a4(ti)

a4(t)
ρr(ti) (radiation).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, Ω ≡ ρ/ρc , where ρc =

3H2

8πG
.
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EVOLUTION OF A MATTER-DOMINATED UNIVERSE:

Flat (k = 0): a(t) ∝ t2/3

Ω = 1 .

Closed (k > 0): ct = α(θ − sin θ) ,
a√
k

= α(1− cos θ) ,

Ω =
2

1 + cos θ
> 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
k

)3

.

Open (k < 0): ct = α (sinh θ − θ) ,
a√
κ

= α (cosh θ − 1) ,

Ω =
2

1 + cosh θ
< 1 ,

where α ≡ 4π

3

Gρ

c2

(
a√
κ

)3

,

κ ≡ −k > 0 .

MINKOWSKI METRIC (Special Relativity):

ds2 ≡ −c2 dτ2 = −c2dt2 + dx2 + dy2 + dz2 .

ROBERTSON-WALKER METRIC:

ds2 ≡ −c2 dτ2 = −c2 dt2+a2(t)

{
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
,

where the universe is closed/open/flat if k > 0/k < 0/k = 0. k can be
taken as +1 (−1) if the universe is closed (open).

Alternatively, for k > 0, we can define r =
sinψ√
k

, and then

ds2 ≡ −c2 dτ2 ≡ −c2 dt2 + ã2(t)
{

dψ2 + sin2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
k. For k < 0 we can define r =

sinhψ√
−k

, and then

ds2 ≡ −c2 dτ2 = −c2 dt2+ã2(t)
{

dψ2 + sinh2 ψ
(
dθ2 + sin2 θ dφ2

)}
,

where ã(t) = a(t)/
√
−k. Note that ã can be called a if there is no need

to relate it to the a(t) that appears in the first equation above.
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SCHWARZSCHILD METRIC:

ds2 ≡ −c2dτ2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

GEODESIC EQUATION:

d

ds

{
gij

dxj

ds

}
=

1

2
(∂igk`)

dxk

ds

dx`

ds

or:
d

dτ

{
gµν

dxν

dτ

}
=

1

2
(∂µgλσ)

dxλ

dτ

dxσ

dτ

BLACK-BODY RADIATION:

u = g
π2

30

(kT )4

(h̄c)3
(energy density)

p =
1

3
u ρ = u/c2 (pressure, mass density)

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
(number density)

s = g
2π2

45

k4T 3

(h̄c)3
, (entropy density)

where

g ≡

{
1 per spin state for bosons (integer spin)

7/8 per spin state for fermions (half-integer spin)

g∗ ≡

{
1 per spin state for bosons

3/4 per spin state for fermions ,
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and

ζ(3) =
1

13
+

1

23
+

1

33
+ · · · ≈ 1.202 .

gγ = g∗γ = 2 ,

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
,

g∗ν =
3

4︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
9

2
,

ge+e− =
7

8︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
,

g∗e+e− =
3

4︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

= 3 .

EVOLUTION OF A FLAT RADIATION-DOMINATED UNI-
VERSE:

ρ =
3

32πGt2

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t

For mµ = 106 MeV� kT � me = 0.511 MeV, g = 10.75 and then

kT =
0.860 MeV√
t (in sec)

(
10.75

g

)1/4

After the freeze-out of electron-positron pairs,

Tν
Tγ

=

(
4

11

)1/3

.

COSMOLOGICAL CONSTANT:

uvac = ρvacc
2 =

Λc4

8πG
,
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pvac = −ρvacc
2 = − Λc4

8πG
.

GENERALIZED COSMOLOGICAL EVOLUTION:

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 ,

where

x ≡ a(t)

a(t0)
≡ 1

1 + z
,

Ωk,0 ≡ −
kc2

a2(t0)H2
0

= 1− Ωm,0 − Ωrad,0 − Ωvac,0 .

Age of universe:

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2

=
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + Ωrad,0(1 + z)4 + Ωvac,0 + Ωk,0(1 + z)2
.

Look-back time:

tlook-back(z) =

1

H0

∫ z

0

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + Ωrad,0(1 + z′)4 + Ωvac,0 + Ωk,0(1 + z′)2
.

PHYSICAL CONSTANTS:

G = 6.674× 10−11 m3 · kg−1 · s−2 = 6.674× 10−8 cm3 · g−1 · s−2

k = Boltzmann’s constant = 1.381× 10−23 joule/K

= 1.381× 10−16 erg/K

= 8.617× 10−5 eV/K

h̄ =
h

2π
= 1.055× 10−34 joule · s

= 1.055× 10−27 erg · s

= 6.582× 10−16 eV · s

c = 2.998× 108 m/s
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= 2.998× 1010 cm/s

h̄c = 197.3 MeV-fm, 1 fm = 10−15 m

1 yr = 3.156× 107 s

1 eV = 1.602× 10−19 joule = 1.602× 10−12 erg

1 GeV = 109 eV = 1.783× 10−27 kg (where c ≡ 1)

= 1.783× 10−24 g .

Planck Units: The Planck length `P , the Planck time tP , the Planck mass
mP , and the Planck energy Ep are given by

`P =

√
Gh̄

c3
= 1.616× 10−35 m ,

= 1.616× 10−33 cm ,

tP =

√
h̄G

c5
= 5.391× 10−44 s ,

mP =

√
h̄c

G
= 2.177× 10−8 kg ,

= 2.177× 10−5 g ,

EP =

√
h̄c5

G
= 1.221× 1019 GeV .

CHEMICAL EQUILIBRIUM:

(This topic was not included in the course in 2018, but the formulas
are nonetheless included here for logical completeness. They will not
be relevant to Quiz 3. They are relevant to Problem 14 in these Review
Problems, which is also not relevant to Quiz 3. Please enjoy looking
at these items, or enjoy ignoring them!)

Ideal Gas of Classical Nonrelativistic Particles:

ni = gi
(2πmikT )3/2

(2πh̄)3
e(µi−mic2)/kT .

where ni = number density of particle

gi = number of spin states of particle

mi = mass of particle

µi = chemical potential

For any reaction, the sum of the µi on the left-hand side of the
reaction equation must equal the sum of the µi on the right-hand
side. Formula assumes gas is nonrelativistic (kT � mic

2) and dilute
(ni � (2πmikT )3/2/(2πh̄)3).
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PROBLEM 1: DID YOU DO THE READING? (25 points)

The following problem was Problem 1, Quiz 3, in 2007. Each part was worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

(b) (CMB experiments) The current mean energy per CMB photon, about 6× 10−4 eV,
is comparable to the energy of vibration or rotation for a small molecule such as H2O.
Thus microwaves with wavelengths shorter than λ ∼ 3 cm are strongly absorbed by
water molecules in the atmosphere. To measure the CMB at λ < 3 cm, which one
of the following methods is not a feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE,
WMAP and PLANCK.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB by
variations in the gravitational potential is known as the Sachs-Wolfe effect. Which
one of the following statements is not correct concerning this effect?

(i) A CMB photon is redshifted when climbing out of a gravitational potential well,
and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the en-
ergy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the gravitational
effect of primordial density fluctuations in the distribution of nonbaryonic dark
matter.
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(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are due to
variations in the density of nonbaryonic dark matter, while the contributions
from baryons alone would not show such peaks.

(d) (Dark matter candidates) Which one of the following is not a candidate of nonbary-
onic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about 171
GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

(e) (Signatures of dark matter) By what methods can signatures of dark matter be
detected? List two methods. (Grading: 3 points for one correct answer, 5 points for
two correct answers. If you give more than two answers, your score will be based
on the number of right answers minus the number of wrong answers, with a lower
bound of zero.)

∗PROBLEM 2: DID YOU DO THE READING? (25 points)

This problem was Problem 1, Quiz 3, 2009.

(a) (10 points) This question concerns some numbers related to the cosmic microwave
background (CMB) that one should never forget. State the values of these numbers,
to within an order of magnitude unless otherwise stated. In all cases the question
refers to the present value of these quantities.

(i) The average temperature T of the CMB (to within 10%).

(ii) The speed of the Local Group with respect to the CMB, expressed as a fraction
v/c of the speed of light. (The speed of the Local Group is found by measuring
the dipole pattern of the CMB temperature to determine the velocity of the
spacecraft with respect to the CMB, and then removing spacecraft motion, the
orbital motion of the Earth about the Sun, the Sun about the galaxy, and the
galaxy relative to the center of mass of the Local Group.)

(iii) The intrinsic relative temperature fluctuations ∆T/T , after removing the dipole
anisotropy corresponding to the motion of the observer relative to the CMB.

(iv) The ratio of baryon number density to photon number density, η = nbary/nγ .
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(v) The angular size θH , in degrees, corresponding to what was the Hubble distance
c/H at the surface of last scattering. This answer must be within a factor of 3
to be correct.

(b) (3 points) Because photons outnumber baryons by so much, the exponential tail of
the photon blackbody distribution is important in ionizing hydrogen well after kTγ
falls below QH = 13.6 eV. What is the ratio kTγ/QH when the ionization fraction
of the universe is 1/2?

(i) 1/5 (ii) 1/50 (iii) 10−3 (iv) 10−4 (v) 10−5

(c) (2 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(d) (10 points) For each of the following statements, say whether it is true or false:

(i) Dark matter interacts through the gravitational, weak, and electromagnetic
forces. T or F ?

(ii) The virial theorem can be applied to a cluster of galaxies to find its total mass,
most of which is dark matter. T or F ?

(iii) Neutrinos are thought to comprise a significant fraction of the energy density of
dark matter. T or F ?

(iv) Magnetic monopoles are thought to comprise a significant fraction of the energy
density of dark matter. T or F ?

(v) Lensing observations have shown that MACHOs cannot account for the dark
matter in galactic halos, but that as much as 20% of the halo mass could be in
the form of MACHOs. T or F ?
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PROBLEM 3: DID YOU DO THE READING? (35 points)

This was Problem 1 of Quiz 3, 2013.

(a) (5 points) Ryden summarizes the results of the COBE satellite experiment for the
measurements of the cosmic microwave background (CMB) in the form of three
important results. The first was that, in any particular direction of the sky, the
spectrum of the CMB is very close to that of an ideal blackbody. The FIRAS
instrument on the COBE satellite could have detected deviations from the blackbody
spectrum as small as ∆ε/ε ≈ 10−n, where n is an integer. To within ±1, what is n?

(b) (5 points) The second result was the measurement of a dipole distortion of the CMB
spectrum; that is, the radiation is slightly blueshifted to higher temperatures in one
direction, and slightly redshifted to lower temperatures in the opposite direction. To
what physical effect was this dipole distortion attributed?

(c) (5 points) The third result concerned the measurement of temperature fluctuations
after the dipole feature mentioned above was subtracted out. Defining

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉
,

where 〈T 〉 = 2.725 K, the average value of T , they found a root mean square fluctu-
ation, 〈(

δT

T

)2
〉1/2

,

equal to some number. To within an order of magnitude, what was that number?

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.
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(e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed in Ω
at early times, in order for it to be as close to 1 today as we observe. Starting with
the assumption that Ω today is equal to 1 within about 1%, one concludes that at
one second after the big bang,

|Ω− 1|t=1 sec < 10−m ,

where m is an integer. To within ± 3, what is m?

(f) (5 points) The total energy density of the present universe consists mainly of baryonic
matter, dark matter, and dark energy. Give the percentages of each, according to
the best fit obtained from the Planck 2013 data. You will get full credit if the first
(baryonic matter) is accurate to ±2%, and the other two are accurate to within ±5%.

(g) (5 points) Within the conventional hot big bang cosmology (without inflation), it
is difficult to understand how the temperature of the CMB can be correlated at
angular separations that are so large that the points on the surface of last scattering
was separated from each other by more than a horizon distance. Approximately
what angle, in degrees, corresponds to a separation on the surface last scattering of
one horizon length? You will get full credit if your answer is right to within a factor
of 2.

PROBLEM 4: DID YOU DO THE READING? (2016) (25 points)

Except for part (d), you should answer these questions by circling the one statement that
is correct.

(a) (5 points) In the Epilogue of The First Three Minutes, Steve Weinberg wrote: “The
more the universe seems comprehensible, the more it also seems pointless.” The
sentence was qualified, however, by a closing paragraph that points out that

(i) the quest of the human race to create a better life for all can still give meaning
to our lives.

(ii) if the universe cannot give meaning to our lives, then perhaps there is an afterlife
that will.

(iii) the complexity and beauty of the laws of physics strongly suggest that the
universe must have a purpose, even if we are not aware of what it is.

(iv) the effort to understand the universe gives human life some of the grace of
tragedy.

(b) (5 points) In the Afterword of The First Three Minutes, Weinberg discusses the
baryon number of the universe. (The baryon number of any system is the total
number of protons and neutrons (and certain related particles known as hyperons)
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minus the number of their antiparticles (antiprotons, antineutrons, antihyperons)
that are contained in the system.) Weinberg concluded that

(i) baryon number is exactly conserved, so the total baryon number of the universe
must be zero. While nuclei in our part of the universe are composed of protons
and neutrons, the universe must also contain antimatter regions in which nuclei
are composed of antiprotons and antineutrons.

(ii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon
number. Since baryon number is conserved, this can only be explained by
assuming that the excess baryons were put in at the beginning.

(iii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon num-
ber. This can be taken as a positive hint that baryon number is not conserved,
which can happen if there exist as yet undetected heavy “exotic” particles.

(iv) it is possible that baryon number is not exactly conserved, but even if that is the
case, it is not possible that the observed excess of matter over antimatter can be
explained by the very rare processes that violate baryon number conservation.

(c) (5 points) In discussing the COBE measurements of the cosmic microwave back-
ground, Ryden describes a dipole component of the temperature pattern, for which
the temperature of the radiation from one direction is found to be hotter than the
temperature of the radiation detected from the opposite direction.

(i) This discovery is important, because it allows us to pinpoint the direction of the
point in space where the big bang occurred.

(ii) This is the largest component of the CMB anisotropies, amounting to a 10%
variation in the temperature of the radiation.

(iii) In addition to the dipole component, the anisotropies also includes contributions
from a quadrupole, octupole, etc., all of which are comparable in magnitude.

(iv) This pattern is interpreted as a simple Doppler shift, caused by the net motion
of the COBE satellite relative to a frame of reference in which the CMB is
almost isotropic.

(d) (5 points) (CMB basic facts) Which one of the following statements about CMB is
not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.
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(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

(e) (5 points) Inflation is driven by a field that is by definition called the inflaton field.
In standard inflationary models, the field has the following properties:

(i) The inflaton is a scalar field, and during inflation the energy density of the
universe is dominated by its potential energy.

(ii) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its potential energy.

(iii) The inflaton is a scalar field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(iv) The inflaton is a vector field, and during inflation the energy density of the
universe is dominated by its kinetic energy.

(v) The inflaton is a tensor field, which is responsible for only a small fraction of
the energy density of the universe during inflation.

PROBLEM 5: NUMBER DENSITIES IN THE COSMIC BACKGROUND
RADIATION

Today the temperature of the cosmic microwave background radiation is 2.7◦K.
Calculate the number density of photons in this radiation. What is the number density
of thermal neutrinos left over from the big bang?

∗PROBLEM 6: PROPERTIES OF BLACK-BODY RADIATION (25 points)

The following problem was Problem 4, Quiz 3, 1998.

In answering the following questions, remember that you can refer to the formulas
at the front of the exam. Since you were not asked to bring calculators, you may leave
your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of photons at
temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?
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(c) (5 points) Now consider the black-body radiation of a massless boson which has spin
zero, so there is only one spin state. Would the average energy per particle and
entropy per particle be different from the answers you gave in parts (a) and (b)? If
so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos. These parti-
cles are fermions with spin 1/2, and we will assume that they are massless and have
only one possible spin state. What is the average energy per particle for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation of
neutrinos, as described in part (d)?

PROBLEM 7: A NEW SPECIES OF LEPTON

The following problem was Problem 2, Quiz 3, 1992, worth 25 points.

Suppose the calculations describing the early universe were modified by including an
additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly the same
properties as an electron, except that its mass is given by mc2 = 0.750 MeV.

Parts (a)-(c) of this question require numerical answers, but since you were not
told to bring calculators, you need not carry out the arithmetic. Your answer should
be expressed, however, in “calculator-ready” form— that is, it should be an expression
involving pure numbers only (no units), with any necessary conversion factors included.
(For example, if you were asked how many meters a light pulse in vacuum travels in 5
minutes, you could express the answer as 2.998× 108 × 5× 60.)

a) (5 points) What would be the number density of 8.286ions, in particles per cubic
meter, when the temperature T was given by kT = 3 MeV?

b) (5 points) Assuming (as in the standard picture) that the early universe is accurately
described by a flat, radiation-dominated model, what would be the value of the mass
density at t = .01 sec? You may assume that 0.75 MeV � kT � 100 MeV, so the
particles contributing significantly to the black-body radiation include the photons,
neutrinos, e+-e− pairs, and 8.286ion-anti8286ion pairs. Express your answer in the
units of g/cm3.

c) (5 points) Under the same assumptions as in (b), what would be the value of kT , in
MeV, at t = .01 sec?

d) (5 points) When nucleosynthesis calculations are modified to include the effect of the
8.286ion, is the production of helium increased or decreased? Explain your answer
in a few sentences.

e) (5 points) Suppose the neutrinos decouple while kT � 0.75 MeV. If the 8.286ions
are included, what does one predict for the value of Tν/Tγ today? (Here Tν denotes
the temperature of the neutrinos, and Tγ denotes the temperature of the cosmic
background radiation photons.)
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∗PROBLEM 8: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

This problem was Problem 3, Quiz 3, 2009.

Suppose a New Theory of the Weak Interactions (NTWI) was proposed, which dif-
fers from the standard theory in two ways. First, the NTWI predicts that the weak
interactions are somewhat weaker than in the standard model. In addition, the theory
implies the existence of new spin- 1

2 particles (fermions) called the R+ and R−, with a rest
energy of 50 MeV (where 1 MeV = 106 eV). This problem will deal with the cosmological
consequences of such a theory.

The NTWI will predict that the neutrinos in the early universe will decouple at
a higher temperature than in the standard model. Suppose that this decoupling takes
place at kT ≈ 200 MeV. This means that when the neutrinos cease to be thermally
coupled to the rest of matter, the hot soup of particles would contain not only photons,
neutrinos, and e+-e− pairs, but also µ+, µ−, π+, π−, and π0 particles, along with the
R+-R− pairs. (The muon is a particle which behaves almost identically to an electron,
except that its rest energy is 106 MeV. The pions are the lightest of the mesons, with
zero angular momentum and rest energies of 135 MeV and 140 MeV for the neutral and
charged pions, respectively. The π+ and π− are antiparticles of each other, and the π0

is its own antiparticle. Zero angular momentum implies a single spin state.) You may
assume that the universe is flat.

(a) (10 points) According to the standard particle physics model, what is the mass
density ρ of the universe when kT ≈ 200 MeV? What is the value of ρ at this
temperature, according to NTWI? Use either g/cm3 or kg/m3. (If you wish, you can
save time by not carrying out the arithmetic. If you do this, however, you should
give the answer in “calculator-ready” form, by which I mean an expression involving
pure numbers (no units), with any necessary conversion factors included, and with
the units of the answer specified at the end. For example, if asked how far light
travels in 5 minutes, you could answer 2.998× 108 × 5× 60 m.)

(b) (10 points) According to the standard model, the temperature today of the thermal
neutrino background should be (4/11)1/3Tγ , where Tγ is the temperature of the
thermal photon background. What does the NTWI predict for the temperature of
the thermal neutrino background?

(c) (10 points) According to the standard model, what is the ratio today of the number
density of thermal neutrinos to the number density of thermal photons? What is
this ratio according to NTWI?

(d) (10 points) Since the reactions which interchange protons and neutrons involve neu-
trinos, these reactions “freeze out” at roughly the same time as the neutrinos decou-
ple. At later times the only reaction which effectively converts neutrons to protons
is the free decay of the neutron. Despite the fact that neutron decay is a weak inter-
action, we will assume that it occurs with the usual 15 minute mean lifetime. Would
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the helium abundance predicted by the NTWI be higher or lower than the prediction
of the standard model? To within 5 or 10%, what would the NTWI predict for the
percent abundance (by weight) of helium in the universe? (As in part (a), you can
either carry out the arithmetic, or leave the answer in calculator-ready form.)

Useful information: The proton and neutron rest energies are given by mp c
2 =

938.27 MeV and mn c
2 = 939.57 MeV, with (mn −mp)c

2 = 1.29 MeV. The mean
lifetime for the neutron decay, n→ p+ e− + ν̄e , is given by τ = 886 s.

PROBLEM 9: DOUBLING OF ELECTRONS (10 points)

The following was on Quiz 3, 2011 (Problem 4):

Suppose that instead of one species of electrons and their antiparticles, suppose there
was also another species of electron-like and positron-like particles. Suppose that the new
species has the same mass and other properties as the electrons and positrons. If this
were the case, what would be the ratio Tν/Tγ of the temperature today of the neutrinos
to the temperature of the CMB photons.

PROBLEM 10: TIME SCALES IN COSMOLOGY

In this problem you are asked to give the approximate times at which various im-
portant events in the history of the universe are believed to have taken place. The times
are measured from the instant of the big bang. To avoid ambiguities, you are asked to
choose the best answer from the following list:

10−43 sec.
10−37 sec.
10−12 sec.
10−5 sec.
1 sec.
4 mins.
10,000 – 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without explanation.
The events which must be placed are the following:

(a) the beginning of the processes involved in big bang nucleosynthesis;

(b) the end of the processes involved in big bang nucleosynthesis;
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(c) the time of the phase transition predicted by grand unified theories, which takes
place when kT ≈ 1016 GeV;

(d) “recombination”, the time at which the matter in the universe converted from
a plasma to a gas of neutral atoms;

(e) the phase transition at which the quarks became confined, believed to occur
when kT ≈ 300 MeV.

Since cosmology is fraught with uncertainty, in some cases more than one answer will
be acceptable. You are asked, however, to give ONLY ONE of the acceptable answers.

∗PROBLEM 11: EVOLUTION OF FLATNESS (15 points)

The following problem was Problem 3, Quiz 3, 2004.

The “flatness problem” is related to the fact that during the evolution of the standard
cosmological model, Ω is always driven away from 1.

(a) (9 points) During a period in which the universe is matter-dominated (meaning that
the only relevant component is nonrelativistic matter), the quantity

Ω− 1

Ω

grows as a power of t. Show that this is true, and derive the power. (Stating the
right power without a derivation will be worth 3 points.)

(b) (6 points) During a period in which the universe is radiation-dominated, the same
quantity will grow like a different power of t. Show that this is true, and derive the
power. (Stating the right power without a derivation will again be worth 3 points.)

In each part, you may assume that the universe was always dominated by the specified
form of matter.

∗PROBLEM 12: THE SLOAN DIGITAL SKY SURVEY z = 5.82 QUASAR
(40 points)

The following problem was Problem 4, Quiz 3, 2004.

On April 13, 2000, the Sloan Digital Sky Survey announced the discovery of what
was then the most distant object known in the universe: a quasar at z = 5.82. To explain
to the public how this object fits into the universe, the SDSS posted on their website an
article by Michael Turner and Craig Wiegert titled “How Can An Object We See Today
be 27 Billion Light Years Away If the Universe is only 14 Billion Years Old?” Using a
model with H0 = 65 km-s−1-Mpc−1, Ωm = 0.35, and ΩΛ = 0.65, they claimed

(a) that the age of the universe is 13.9 billion years.
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(b) that the light that we now see was emitted when the universe was 0.95 billion years
old.

(c) that the distance to the quasar, as it would be measured by a ruler today, is 27
billion light-years.

(d) that the distance to the quasar, at the time the light was emitted, was 4.0 billion
light-years.

(e) that the present speed of the quasar, defined as the rate at which the distance
between us and the quasar is increasing, is 1.8 times the velocity of light.

The goal of this problem is to check all of these conclusions, although you are of course
not expected to actually work out the numbers. Your answers can be expressed in terms
of H0, Ωm, ΩΛ, and z. Definite integrals need not be evaluated.

Note that Ωm represents the present density of nonrelativistic matter, expressed as
a fraction of the critical density; and ΩΛ represents the present density of vacuum energy,
expressed as a fraction of the critical density. In answering each of the following questions,
you may consider the answer to any previous part — whether you answered it or not —
as a given piece of information, which can be used in your answer.

(a) (15 points) Write an expression for the age t0 of this model universe?

(b) (5 points) Write an expression for the time te at which the light which we now receive
from the distant quasar was emitted.

(c) (10 points) Write an expression for the present physical distance `phys,0 to the quasar.

(d) (5 points) Write an expression for the physical distance `phys,e between us and the
quasar at the time that the light was emitted.

(e) (5 points) Write an expression for the present speed of the quasar, defined as the
rate at which the distance between us and the quasar is increasing.

PROBLEM 13: SECOND HUBBLE CROSSING (40 points)

This problem was Problem 3, Quiz 3, 2007. In 2018 we have not yet talked about Hubble
crossings and the evolution of density perturbations, so this problem would not be fair as
worded. Actually, however, you have learned how to do these calculations, so the problem
would be fair if it described in more detail what needs to be calculated.

In Problem Set 9 (2007) we calculated the time tH1(λ) of the first Hubble crossing
for a mode specified by its (physical) wavelength λ at the present time. In this problem
we will calculate the time tH2(λ) of the second Hubble crossing, the time at which the
growing Hubble length cH−1(t) catches up to the physical wavelength, which is also
growing. At the time of the second Hubble crossing for the wavelengths of interest, the
universe can be described very simply: it is a radiation-dominated flat universe. However,
since λ is defined as the present value of the wavelength, the evolution of the universe
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between tH2(λ) and the present will also be relevant to the problem. We will need to

use methods, therefore, that allow for both the matter-dominated era and the onset of

the dark-energy-dominated era. As in Problem Set 9 (2007), the model universe that we

consider will be described by the WMAP 3-year best fit parameters:

Hubble expansion rate H0 = 73.5 km · s−1 ·Mpc−1

Nonrelativistic mass density Ωm = 0.237
Vacuum mass density Ωvac = 0.763
CMB temperature Tγ,0 = 2.725 K

The mass densities are defined as contributions to Ω, and hence describe the mass density

of each constituent relative to the critical density. Note that the model is exactly flat,

so you need not worry about spatial curvature. Here you are not expected to give a

numerical answer, so the above list will serve only to define the symbols that can appear

in your answers, along with λ and the physical constants G, h̄, c, and k.

(a) (5 points) For a radiation-dominated flat universe, what is the Hubble length `H(t) ≡
cH−1(t) as a function of time t?

(b) (10 points) The second Hubble crossing will occur during the interval

30 sec� t� 50, 000 years,

when the mass density of the universe is dominated by photons and neutrinos. During

this era the neutrinos are a little colder than the photons, with Tν = (4/11)1/3Tγ .

The total energy density of the photons and neutrinos together can be written as

utot = g1
π2

30

(kTγ)4

(h̄c)3
.

What is the value of g1? (For the following parts you can treat g1 as a given variable

that can be left in your answers, whether or not you found it.)

(c) (10 points) For times in the range described in part (b), what is the photon temper-

ature Tγ(t) as a function of t?

(d) (15 points) Finally, we are ready to find the time tH2(λ) of the second Hubble

crossing, for a given value of the physical wavelength λ today. Making use of the

previous results, you should be able to determine tH2(λ). If you were not able to

answer some of the previous parts, you may leave the symbols `H(t), g1, and/or

Tγ(t) in your answer.
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PROBLEM 14: NEUTRINO NUMBER AND THE NEUTRON/ PROTON
EQUILIBRIUM (35 points)

The following problem was 1998 Quiz 4, Problem 4. This would NOT be a fair problem
for 2018, as this year we have not discussed big bang nucleosynthesis at this level of detail.
But I am including the problem anyway, as you might find it interesting.

In the standard treatment of big bang nucleosynthesis it is assumed that at early
times the ratio of neutrons to protons is given by the Boltzmann formula,

nn
np

= e−∆E/kT , (1)

where k is Boltzmann’s constant, T is the temperature, and ∆E = 1.29 MeV is the
proton-neutron mass-energy difference. This formula is believed to be very accurate,
but it assumes that the chemical potential for neutrons µn is the same as the chemical
potential for protons µp.

(a) (10 points) Give the correct version of Eq. (1), allowing for the possibility that
µn 6= µp.

The equilibrium between protons and neutrons in the early universe is sustained mainly
by the following reactions:

e+ + n←→ p+ ν̄e

νe + n←→ p+ e− .

Let µe and µν denote the chemical potentials for the electrons (e−) and the electron
neutrinos (νe) respectively. The chemical potentials for the positrons (e+) and the anti-
electron neutrinos (ν̄e) are then –µe and –µν , respectively, since the chemical potential
of a particle is always the negative of the chemical potential for the antiparticle.*

(b) (10 points) Express the neutron/proton chemical potential difference µn−µp in terms
of µe and µν .

The black-body radiation formulas at the beginning of the quiz did not allow for the
possibility of a chemical potential, but they can easily be generalized. For example, the
formula for the number density ni (of particles of type i) becomes

ni = g∗i
ζ(3)

π2

(kT )3

(h̄c)3
eµi/kT .

(c) (10 points) Suppose that the density of anti-electron neutrinos n̄ν in the early uni-
verse was higher than the density of electron neutrinos nν . Express the thermal

* This fact is a consequence of the principle that the chemical potential of a particle is
the sum of the chemical potentials associated with its conserved quantities, while particle
and antiparticle always have the opposite values of all conserved quantities.
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equilibrium value of the ratio nn/np in terms of ∆E, T , and either the ratio n̄ν/nν
or the antineutrino excess ∆n = n̄ν−nν . (Your answer may also contain fundamental
constants, such as k, h̄, and c.)

(d) (5 points) Would an excess of anti-electron neutrinos, as considered in part (c),
increase or decrease the amount of helium that would be produced in the early
universe? Explain your answer.

PROBLEM 15: THE EVENT HORIZON FOR OUR UNIVERSE (25 points)

The following problem was Problem 3 from Quiz 3, 2013.

We have learned that the expansion history of our universe can be described in terms
of a small set of numbers: Ωm,0, the present contribution to Ω from nonrelativistic matter;
Ωrad,0, the present contribution to Ω from radiation; Ωvac, the present contribution to
Ω from vacuum energy; and H0, the present value of the Hubble expansion rate. The
best estimates of these numbers are consistent with a flat universe, so we can take k = 0,
Ωm,0 + Ωrad,0 + Ωvac = 1, and we can use the flat Robertson-Walker metric,

ds2 = −c2 dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
.

(a) (5 points) Suppose that we are at the origin of the coordinate system, and that at
the present time t0 we emit a spherical pulse of light. It turns out that there is a
maximum coordinate radius r = rmax that this pulse will ever reach, no matter how
long we wait. (The pulse will never actually reach rmax, but will reach all r such that
0 < r < rmax.) rmax is the coordinate of what is called the event horizon: events
that happen now at r ≥ rmax will never be visible to us, assuming that we remain at
the origin. Assuming for this part that the function a(t) is a known function, write
an expression for rmax. Your answer should be expressed as an integral, which can
involve a(t), t0, and any of the parameters defined in the preamble. [Advice: If you
cannot answer this, you should still try part (c).]

(b) (10 points) Since a(t) is not known explicitly, the answer to the previous part is
difficult to use. Show, however, that by changing the variable of integration, you can
rewrite the expression for rmax as a definite integral involving only the parameters
specified in the preamble, without any reference to the function a(t), except perhaps
to its present value a(t0). You are not expected to evaluate this integral. [Hint: One
method is to use

x =
a(t)

a(t0)

as the variable of integration, just as we did when we derived the first of the expres-
sions for t0 shown in the formula sheets.]

(c) (10 points) Astronomers often describe distances in terms of redshifts, so it is useful
to find the redshift of the event horizon. That is, if a light ray that originated at
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r = rmax arrived at Earth today, what would be its redshift zeh (eh = event horizon)?

You are not asked to find an explicit expression for zeh, but instead an equation that

could be solved numerically to determine zeh. For this part you can treat rmax

as given, so it does not matter if you have done parts (a) and (b). You will get

half credit for a correct answer that involves the function a(t), and full credit for a

correct answer that involves only explicit integrals depending only on the parameters

specified in the preamble, and possibly a(t0).

PROBLEM 16: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-

LUTION (25 points)

The following problem was Problem 2 of Quiz 3, 2016. It was also Problem 2 of Problem

Set 7 (2016), except that some numerical constants have been changed, so the answers

will not be identical.

A radiation-dominated universe behaves differently from a matter-dominated uni-

verse because the pressure of the radiation is significant. In this problem we explore the

role of pressure for several fictitious forms of matter.

(a) (8 points) For the first fictitious form of matter, the mass density ρ decreases as the

scale factor a(t) grows, with the relation

ρ(t) ∝ 1

a8(t)
.

What is the pressure of this form of matter? [Hint: the answer is proportional to

the mass density.]

(b) (9 points) Find the behavior of the scale factor a(t) for a flat universe dominated

by the form of matter described in part (a). You should be able to determine the

function a(t) up to a constant factor.

(c) (8 points) Now consider a universe dominated by a different form of fictitious matter,

with a pressure given by

p =
2

3
ρc2 .

As the universe expands, the mass density of this form of matter behaves as

ρ(t) ∝ 1

an(t)
.

Find the power n.
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∗PROBLEM 17: THE FREEZE-OUT OF A FICTITIOUS PARTICLE X
(25 points)

The following problem was Problem 3 of Quiz 3, 2016.

Suppose that, in addition to the particles that are known to exist, there also existed a
family of three spin-1 particles, X+, X−, and X0, all with masses 0.511 MeV/c2, exactly
the same as the electron. The X− is the antiparticle of the X+, and the X0 is its own
antiparticle. Since the X’s are spin-1 particles with nonzero mass, each particle has three
spin states.

The X’s do not interact with neutrinos any more strongly than the electrons and
positrons do, so when the X’s freeze out, all of their energy and entropy are given to the
photons, just like the electron-positron pairs.

(a) (5 points) In thermal equilibrium when kT � 0.511 MeV/c2, what is the total energy
density of the X+, X−, and X0 particles?

(b) (5 points) In thermal equilibrium when kT � 0.511 MeV/c2, what is the total
number density of the X+, X−, and X0 particles?

(c) (10 points) The X particles and the electron-positron pairs freeze out of the thermal
equilibrium radiation at the same time, as kT decreases from values large compared
to 0.511 MeV/c2 to values that are small compared to it. If the X’s, electron-positron
pairs, photons, and neutrinos were all in thermal equilibrium before this freeze-out,
what will be the ratio Tν/Tγ , the ratio of the neutrino temperature to the photon
temperature, after the freeze-out?

(d) (5 points) If the mass of theX’s was, for example, 0.100 MeV/c2, so that the electron-
positron pairs froze out first, and then the X’s froze out, would the final ratio Tν/Tγ
be higher, lower, or the same as the answer to part (c)? Explain your answer in a
sentence or two.

∗PROBLEM 18: THE TIME td OF DECOUPLING (25 points)

The following problem was Problem 4 of Quiz 3, 2016.

The process by which the photons of the cosmic microwave background stop scatter-
ing and begin to travel on straight lines is called decoupling, and it happens at a photon
temperature of about Td ≈ 3, 000 K. In Lecture Notes 6 we estimated the time td of
decoupling, working in the approximation that the universe has been matter-dominated
from that time to the present. We found a value of 370,000 years. In this problem we
will remove this approximation, although we will not carry out the numerical evaluation
needed to compare with the previous answer.
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(a) (5 points) Let us define

x(t) ≡ a(t)

a(t0)
,

as on the formula sheets, where t0 is the present time. What is the value of xd ≡
x(td)? Assume that the entropy of photons is conserved from time td to the present,
and let T0 denote the present photon temperature.

(b) (5 points) Assume that the universe is flat, and that Ωm,0, Ωrad,0, and Ωvac,0 denote
the present contributions to Ω from nonrelativistic matter, radiation, and vacuum
energy, respectively. Let H0 denote the present value of the Hubble expansion rate.
Write an expression in terms of these quantities for dx/dt, the derivative of x with
respect to t. Hint: you may use formulas from the formula sheet without derivation,
so this problem should require essentially no work. To receive full credit, your answer
should include only terms that make a nonzero contribution to the answer.

(c) (5 points) Write an expression for td. If your answer involves an integral, you need
not try to evaluate it, but you should be sure that the limits of integration are clearly
shown.

(d) (10 points) Now suppose that in addition to the constituents described in part (b),
the universe also contains some of the fictitious material from part (a) of Problem
2, with

ρ(t) ∝ 1

a8(t)
.

Denote the present contribution to Ω from this fictitious material as Ωf,0. The
universe is still assumed to be flat, so the numerical values of Ωm,0, Ωrad,0, and
Ωvac,0 must sum to a smaller value than in parts (b) and (c). With this extra
contribution to the mass density of the universe, what is the new expression for td?
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SOLUTIONS

PROBLEM 1: DID YOU DO THE READING? (25 points)

The following parts are each worth 5 points.

(a) (CMB basic facts) Which one of the following statements about CMB is not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement
of an excess temperature of about 3.5 K that was isotropic, unpolarized, and
free from seasonal variations. In a companion paper written by Dicke, Peebles,
Roll and Wilkinson, the authors interpreted the radiation to be a relic of an
early, hot, dense, and opaque state of the universe.

Explanation: After subtracting the dipole contribution, the temperature fluctua-
tion is about 1.1× 10−5.

(b) (CMB experiments) The current mean energy per CMB photon, about 6× 10−4 eV,
is comparable to the energy of vibration or rotation for a small molecule such as H2O.
Thus microwaves with wavelengths shorter than λ ∼ 3 cm are strongly absorbed by
water molecules in the atmosphere. To measure the CMB at λ < 3 cm, which one
of the following methods is not a feasible solution to this problem?

(i) Measure CMB from high-altitude balloons, e.g. MAXIMA.

(ii) Measure CMB from the South Pole, e.g. DASI.

(iii) Measure CMB from the North Pole, e.g. BOOMERANG.

(iv) Measure CMB from a satellite above the atmosphere of the Earth, e.g. COBE,
WMAP and PLANCK.

Explanation: The North Pole is at sea level. In contrast, the South Pole is
nearly 3 kilometers above sea level. BOOMERANG is a balloon-borne experi-
ment launched from Antarctica.

(c) (Temperature fluctuations) The creation of temperature fluctuations in CMB by
variations in the gravitational potential is known as the Sachs-Wolfe effect. Which
one of the following statements is not correct concerning this effect?
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(i) A CMB photon is redshifted when climbing out of a gravitational potential well,
and is blueshifted when falling down a potential hill.

(ii) At the time of last scattering, the nonbaryonic dark matter dominated the en-
ergy density, and hence the gravitational potential, of the universe.

(iii) The large-scale fluctuations in CMB temperatures arise from the gravitational
effect of primordial density fluctuations in the distribution of nonbaryonic dark
matter.

(iv) The peaks in the plot of temperature fluctuation ∆T vs. multipole l are due to

variations in the density of nonbaryonic dark matter, while the contributions
from baryons alone would not show such peaks.

Explanation: These peaks are due to the acoustic oscillations in the photon-
baryon fluid.

(d) (Dark matter candidates) Which one of the following is not a candidate of nonbary-
onic dark matter?

(i) massive neutrinos

(ii) axions

(iii) matter made of top quarks (a type of quarks with heavy mass of about 171

GeV).

(iv) WIMPs (Weakly Interacting Massive Particles)

(v) primordial black holes

Explanation: Matter made of top quarks is so unstable that it is seen only fleet-
ingly as a product in high energy particle collisions.

(e) (Signatures of dark matter) By what methods can signatures of dark matter be
detected? List two methods. (Grading: 3 points for one correct answer, 5 points for
two correct answers. If you give more than two answers, your score will be based
on the number of right answers minus the number of wrong answers, with a lower
bound of zero.)

Answers:

(i) Galaxy rotation curves. (I.e., measurements of the orbital speed of stars in spiral
galaxies as a function of radius R show that these curves remain flat at radii
far beyond the visible stellar disk. If most of the matter were contained in the
disk, then these velocities should fall off as 1/

√
R.)

(ii) Use the virial theorem to estimate the mass of a galaxy cluster. (For example,
the virial analysis shows that only 2% of the mass of the Coma cluster consists
of stars, and only 10% consists of hot intracluster gas.
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(iii) Gravitational lensing. (For example, the mass of a cluster can be estimated from
the distortion of the shapes of the galaxies behind the cluster.)

(iv) CMB temperature fluctuations. (I.e., the analysis of the intensity of the fluc-
tuations as a function of multipole number shows that Ωtot ≈ 1, and that dark
energy contributes ΩΛ ≈ 0.7, baryonic matter contributes Ωbary ≈ 0.04, and
dark matter contributes Ωdark matter ≈ 0.26.)

There are other possible answers as well, but these are the ones discussed by Ryden
in Chapters 8 and 9.

PROBLEM 2: DID YOU DO THE READING? (25 points)

(a) (10 points) This question concerns some numbers related to the cosmic microwave
background (CMB) that one should never forget. State the values of these numbers,
to within an order of magnitude unless otherwise stated. In all cases the question
refers to the present value of these quantities.

(i) The average temperature T of the CMB (to within 10%). 2.725 K

(ii) The speed of the Local Group with respect to the CMB, expressed as a fraction
v/c of the speed of light. (The speed of the Local Group is found by measuring
the dipole pattern of the CMB temperature to determine the velocity of the
spacecraft with respect to the CMB, and then removing spacecraft motion, the
orbital motion of the Earth about the Sun, the Sun about the galaxy, and the
galaxy relative to the center of mass of the Local Group.)

The dipole anisotropy corresponds to a “peculiar velocity” (that is, velocity which
is not due to the expansion of the universe) of 630 ± 20 km s−1, or in terms of

the speed of light, v/c ≈ 2× 10−3 .

(iii) The intrinsic relative temperature fluctuations ∆T/T , after removing the dipole
anisotropy corresponding to the motion of the observer relative to the CMB.

1.1× 10−5

(iv) The ratio of baryon number density to photon number density, η = nbary/nγ .

The WMAP 5-year value for η = nb/nγ = (6.225± 0.170)× 10−10 , which to

closest order of magnitude is 10−9.

(v) The angular size θH , in degrees, corresponding to what was the Hubble distance
c/H at the surface of last scattering. This answer must be within a factor of 3

to be correct. ∼ 1◦

(b) (3 points) Because photons outnumber baryons by so much, the exponential tail of
the photon blackbody distribution is important in ionizing hydrogen well after kTγ
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falls below QH = 13.6 eV. What is the ratio kTγ/QH when the ionization fraction
of the universe is 1/2?

(i) 1/5 (ii) 1/50 (iii) 10−3 (iv) 10−4 (v) 10−5

This is not a number one has to commit to memory if one can remember the
temperature of (re)combination in eV, or if only in K along with the conversion
factor (k ≈ 10−4 eV K−1). One can then calculate that near recombination,
kTγ/QH ≈ (10−4 eV K−1)(3000 K)/(13.6 eV) ≈ 1/45.

(c) (2 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

Explanation: Denser regions have a deeper (more negative) gravitational poten-
tial. Photons which travel through a spatially varying potential acquire a redshift
or blueshift depending on whether they are going up or down the potential, re-
spectively. Photons originating in the denser regions start at a lower potential
and must climb out, so they end up being redshifted relative to their original
energies.

(d) (10 points) For each of the following statements, say whether it is true or false:

(i) Dark matter interacts through the gravitational, weak, and electromagnetic

forces. T or F ?

(ii) The virial theorem can be applied to a cluster of galaxies to find its total mass,

most of which is dark matter. T or F ?

(iii) Neutrinos are thought to comprise a significant fraction of the energy density of

dark matter. T or F ?

(iv) Magnetic monopoles are thought to comprise a significant fraction of the energy

density of dark matter. T or F ?
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(v) Lensing observations have shown that MACHOs cannot account for the dark
matter in galactic halos, but that as much as 20% of the halo mass could be in

the form of MACHOs. T or F ?

PROBLEM 3: DID YOU DO THE READING? (35 points)

(a) (5 points) Ryden summarizes the results of the COBE satellite experiment for the
measurements of the cosmic microwave background (CMB) in the form of three
important results. The first was that, in any particular direction of the sky, the
spectrum of the CMB is very close to that of an ideal blackbody. The FIRAS
instrument on the COBE satellite could have detected deviations from the blackbody
spectrum as small as ∆ε/ε ≈ 10−n, where n is an integer. To within ±1, what is n?

Answer: n = 4

(b) (5 points) The second result was the measurement of a dipole distortion of the CMB
spectrum; that is, the radiation is slightly blueshifted to higher temperatures in one
direction, and slightly redshifted to lower temperatures in the opposite direction. To
what physical effect was this dipole distortion attributed?

Answer: The large dipole in the CMB is attributed to the motion of the satellite
relative to the frame in which the CMB is very nearly isotropic. (The entire Local
Group is moving relative to this frame at a speed of about 0.002c.)

(c) (5 points) The third result concerned the measurement of temperature fluctuations
after the dipole feature mentioned above was subtracted out. Defining

δT

T
(θ, φ) ≡ T (θ, φ)− 〈T 〉

〈T 〉
,

where 〈T 〉 = 2.725 K, the average value of T , they found a root mean square fluctu-
ation, 〈(

δT

T

)2
〉1/2

,

equal to some number. To within an order of magnitude, what was that number?

Answer: 〈(
δT

T

)2
〉1/2

= 1.1× 10−5 .

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 33

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(iv) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

(v) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(vi) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(e) (5 points) The flatness problem refers to the extreme fine-tuning that is needed in Ω
at early times, in order for it to be as close to 1 today as we observe. Starting with
the assumption that Ω today is equal to 1 within about 1%, one concludes that at
one second after the big bang,

|Ω− 1|t=1 sec < 10−m ,

where m is an integer. To within ± 3, what is m?

Answer: m = 18. (See the derivation in Lecture Notes 8.)

(f) (5 points) The total energy density of the present universe consists mainly of baryonic
matter, dark matter, and dark energy. Give the percentages of each, according to
the best fit obtained from the Planck 2013 data. You will get full credit if the first
(baryonic matter) is accurate to ±2%, and the other two are accurate to within ±5%.

Answer: Baryonic matter: 5%. Dark matter: 26.5%. Dark energy: 68.5%. The
Planck 2013 numbers were given in Lecture Notes 7. To the requested accuracy,
however, numbers such as Ryden’s Benchmark Model would also be satisfactory.

(g) (5 points) Within the conventional hot big bang cosmology (without inflation), it
is difficult to understand how the temperature of the CMB can be correlated at
angular separations that are so large that the points on the surface of last scattering
was separated from each other by more than a horizon distance. Approximately
what angle, in degrees, corresponds to a separation on the surface last scattering of
one horizon length? You will get full credit if your answer is right to within a factor
of 2.

Answer: Ryden gives 1◦ as the angle subtended by the Hubble length on the surface
of last scattering. For a matter-dominated universe, which would be a good model
for our universe, the horizon length is twice the Hubble length. Any number from
1◦ to 5◦ was considered acceptable.
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PROBLEM 4: DID YOU DO THE READING? (25 points)

Except for part (d), you should answer these questions by circling the one statement that
is correct.

(a) (5 points) In the Epilogue of The First Three Minutes, Steve Weinberg wrote: “The
more the universe seems comprehensible, the more it also seems pointless.” The
sentence was qualified, however, by a closing paragraph that points out that

(i) the quest of the human race to create a better life for all can still give meaning
to our lives.

(ii) if the universe cannot give meaning to our lives, then perhaps there is an afterlife
that will.

(iii) the complexity and beauty of the laws of physics strongly suggest that the
universe must have a purpose, even if we are not aware of what it is.

(iv) the effort to understand the universe gives human life some of the grace of

tragedy.

(b) (5 points) In the Afterword of The First Three Minutes, Weinberg discusses the
baryon number of the universe. (The baryon number of any system is the total
number of protons and neutrons (and certain related particles known as hyperons)
minus the number of their antiparticles (antiprotons, antineutrons, antihyperons)
that are contained in the system.) Weinberg concluded that

(i) baryon number is exactly conserved, so the total baryon number of the universe
must be zero. While nuclei in our part of the universe are composed of protons
and neutrons, the universe must also contain antimatter regions in which nuclei
are composed of antiprotons and antineutrons.

(ii) there appears to be a cosmic excess of matter over antimatter throughout the
part of the universe we can observe, and hence a positive density of baryon
number. Since baryon number is conserved, this can only be explained by
assuming that the excess baryons were put in at the beginning.

(iii) there appears to be a cosmic excess of matter over antimatter throughout the

part of the universe we can observe, and hence a positive density of baryon num-
ber. This can be taken as a positive hint that baryon number is not conserved,
which can happen if there exist as yet undetected heavy “exotic” particles.

(iv) it is possible that baryon number is not exactly conserved, but even if that is the
case, it is not possible that the observed excess of matter over antimatter can be
explained by the very rare processes that violate baryon number conservation.

Explanation: All students were given credit for this part, whether they answered it
correctly or not. I was in San Francisco when I made up this quiz, and due
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to poor planning I did not have my copy of The First Three Minutes. So I
found a version online, but I could only find the British version, published by
Flamingo/Fontana Paperbacks, rather than the US version published by Basic
Books. I assumed that the “Afterword” in the two versions would be the same,
but I was wrong! So this question was based on a different “Afterword” than
the one that you read. 55% of you still got it right, but obviously the question
was not fair. Apologies.

(c) (5 points) In discussing the COBE measurements of the cosmic microwave back-
ground, Ryden describes a dipole component of the temperature pattern, for which
the temperature of the radiation from one direction is found to be hotter than the
temperature of the radiation detected from the opposite direction.

(i) This discovery is important, because it allows us to pinpoint the direction of the
point in space where the big bang occurred.

(ii) This is the largest component of the CMB anisotropies, amounting to a 10%
variation in the temperature of the radiation.

(iii) In addition to the dipole component, the anisotropies also include contributions
from a quadrupole, octupole, etc., all of which are comparable in magnitude.

(iv) This pattern is interpreted as a simple Doppler shift, caused by the net motion

of the COBE satellite relative to a frame of reference in which the CMB is
almost isotropic.

Explanation: (i) is nonsense, since the conventional big bang theory descibes a com-
pletely homogeneous universe, which has no single point at which the big bang
occurred. (ii) is wrong, because the variations in the temperature of the CMB
are much smaller than 10%. The dipole term has a magnitude of about 1/1000
of the mean temperature. (iii) is wrong because the dipole is not comparable to
the other terms, because they have magnitudes of only about 1/100,000 of the
mean.

(d) (5 points) (CMB basic facts) Which one of the following statements about CMB is
not correct:

(i) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is 〈T 〉 = 2.725K.

(ii) After the dipole distortion of the CMB is subtracted away, the root mean square

temperature fluctuation is
〈(

δT
T

)2〉1/2

= 1.1× 10−3.

(iii) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.
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(iv) In their groundbreaking paper, Wilson and Penzias reported the measurement

of an excess temperature of about 3.5 K that was isotropic, unpolarized, and

free from seasonal variations. In a companion paper written by Dicke, Peebles,

Roll and Wilkinson, the authors interpreted the radiation to be a relic of an

early, hot, dense, and opaque state of the universe.

Explanation: The right value is

〈(
δT

T

)2
〉1/2

= 1.1× 10−5 .

(e) (5 points) Inflation is driven by a field that is by definition called the inflaton field.

In standard inflationary models, the field has the following properties:

(i) The inflaton is a scalar field, and during inflation the energy density of the

universe is dominated by its potential energy.

(ii) The inflaton is a vector field, and during inflation the energy density of the

universe is dominated by its potential energy.

(iii) The inflaton is a scalar field, and during inflation the energy density of the

universe is dominated by its kinetic energy.

(iv) The inflaton is a vector field, and during inflation the energy density of the

universe is dominated by its kinetic energy.

(v) The inflaton is a tensor field, which is responsible for only a small fraction of

the energy density of the universe during inflation.

Explanation: These facts were mentioned in both Section 11.5 (The Physics of In-

flation) of Ryden’s book, and also in the article that you were asked to read

called Inflation and the New Era of High-Precision Cosmology, written by me

for the Physics Department 2002 newsletter.

PROBLEM 5: NUMBER DENSITIES IN THE COSMIC BACKGROUND

RADIATION

In general, the number density of a particle in the black-body radiation is given by

n = g∗
ξ(3)

π2

(
kT

h̄c

)3
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For photons, one has g∗ = 2. Then

k = 1.381× 10−16erg/◦K

T = 2.7 ◦K

h̄ = 1.055× 10−27erg-sec

c = 2.998× 1010cm/sec


=⇒

(
kT

h̄c

)3

= 1.638× 103cm−3 .

Then using ξ(3) ' 1.202, one finds

nγ = 399/cm3 .

For the neutrinos,

g∗ν = 2× 3

4
=

3

2
per species.

The factor of 2 is to account for ν and ν̄, and the factor of 3/4 arises from the Pauli

exclusion principle. So for three species of neutrinos one has

g∗ν =
9

2
.

Using the result

T 3
ν =

4

11
T 3
γ

from Problem 8 of Problem Set 3 (2000), one finds

nν =

(
g∗ν
g∗γ

)(
Tν
Tγ

)3

nγ

=

(
9

4

)(
4

11

)
399cm−3

=⇒ nν = 326/cm3 (for all three species combined).
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PROBLEM 6: PROPERTIES OF BLACK-BODY RADIATION

(a) The average energy per photon is found by dividing the energy density by the number

density. The photon is a boson with two spin states, so g = g∗ = 2. Using the

formulas on the front of the exam,

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which is often

used as a rough estimate.

(b) The method is the same as above, except this time we use the formula for the entropy

density:

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzmann constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and

the average entropy particle depends only on the ratio g/g∗, so there would be

no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
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number of spin states. So the average energy per particle is

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

π2

30

(kT )4

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy per

particle is unaffected — the energy density and the total number density are both

doubled, but their ratio is unchanged.

Note that the energy per particle is higher for fermions than it is for bosons. This

result can be understood as a natural consequence of the fact that fermions must

obey the exclusion principle, while bosons do not. Large numbers of bosons can

therefore collect in the lowest energy levels. In fermion systems, on the other hand,

the low-lying levels can accommodate at most one particle, and then additional

particles are forced to higher energy levels.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 40

(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

2π2

45

k4T 3

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.

PROBLEM 7: A NEW SPECIES OF LEPTON

a) The number density is given by the formula at the start of the exam,

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
.

Since the 8.286ion is like the electron, it has g∗ = 3; there are 2 spin states for the
particles and 2 for the antiparticles, giving 4, and then a factor of 3/4 because the
particles are fermions. So

Then

Answer = 3
ζ(3)

π2
×
(

3× 106 × 102

6.582× 10−16 × 2.998× 1010

)3

.
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You were not asked to evaluate this expression, but the answer is 1.29× 1039.

b) For a flat cosmology κ = 0 and one of the Einstein equations becomes(
ȧ

a

)2

=
8π

3
Gρ .

During the radiation-dominated era a(t) ∝ t1/2, as claimed on the front cover of the
exam. So,

ȧ

a
=

1

2t
.

Using this in the above equation gives

1

4t2
=

8π

3
Gρ .

Solve this for ρ,

ρ =
3

32πGt2
.

The question asks the value of ρ at t = 0.01 sec. With G = 6.6732 ×
10−8 cm3 sec−2 g−1, then

ρ =
3

32π × 6.6732× 10−8 × (0.01)2

in units of g/cm3. You weren’t asked to put the numbers in, but, for reference, doing
so gives ρ = 4.47× 109 g/cm3.

c) The mass density ρ = u/c2, where u is the energy density. The energy density for
black-body radiation is given in the exam,

u = ρc2 = g
π2

30

(kT )4

(h̄c)3
.

We can use this information to solve for kT in terms of ρ(t) which we found above
in part (b). At a time of 0.01 sec, g has the following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

8.286ion− anti8.286ion g = 4× 7
8 = 3 1

2
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gtot = 14
1

4
.

Solving for kT in terms of ρ gives

kT =

[
30

π2

1

gtot
h̄3c5ρ

]1/4

.

Using the result for ρ from part (b) as well as the list of fundamental constants from
the cover sheet of the exam gives

kT =

[
90× (1.055× 10−27)3 × (2.998× 1010)5

14.24× 32π3 × 6.6732× 10−8 × (0.01)2

]1/4

× 1

1.602× 10−6

where the answer is given in units of MeV. Putting in the numbers yields kT = 8.02
MeV.

d) The production of helium is increased. At any given temperature, the additional
particle increases the energy density. Since H ∝ ρ1/2, the increased energy density
speeds the expansion of the universe— the Hubble constant at any given temperature
is higher if the additional particle exists, and the temperature falls faster. The
weak interactions that interconvert protons and neutrons “freeze out” when they
can no longer keep up with the rate of evolution of the universe. The reaction
rates at a given temperature will be unaffected by the additional particle, but the
higher value of H will mean that the temperature at which these rates can no longer
keep pace with the universe will occur sooner. The freeze-out will therefore occur
at a higher temperature. The equilibrium value of the ratio of neutron to proton
densities is larger at higher temperatures: nn/np ∝ exp(−∆mc2/kT ), where nn and
np are the number densities of neutrons and protons, and ∆m is the neutron-proton
mass difference. Consequently, there are more neutrons present to combine with
protons to build helium nuclei. In addition, the faster evolution rate implies that
the temperature at which the deuterium bottleneck breaks is reached sooner. This
implies that fewer neutrons will have a chance to decay, further increasing the helium
production.

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved separately
from the entropy in the rest of the radiation bath. Just after neutrino decoupling,
all of the particles in equilibrium are described by the same temperature which cools
as T ∝ 1/a. The entropy in the bath of particles still in equilibrium just after the
neutrinos decouple is

S ∝ grestT
3(t)a3(t)

where grest = gtot−gν = 9. By today, the e+−e− pairs and the 8.286ion-anti8.286ion
pairs have annihilated, thus transferring their entropy to the photon bath. As a result
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the temperature of the photon bath is increased relative to that of the neutrino bath.
From conservation of entropy we have that the entropy after annihilations is equal
to the entropy before annihilations

gγT
3
γ a

3(t) = grestT
3(t)a3(t) .

So,

Tγ
T (t)

=

(
grest

gγ

)1/3

.

Since the neutrino temperature was equal to the temperature before annihilations,
we have that

Tν
Tγ

=

(
2

9

)1/3

.

PROBLEM 8: A NEW THEORY OF THE WEAK INTERACTIONS (40
points)

(a) In the standard model, the black-body radiation at kT ≈ 200 MeV contains the
following contributions:

Photons: g = 2

e+e−: g = 4× 7
8 = 3 1

2

νe, νµ, ντ : g = 6× 7
8 = 5 1

4

µ+µ−: g = 4× 7
8 = 3 1

2

π+π−π0 g = 3


gTOT = 17

1

4

The mass density is then given by

ρ =
u

c2
= gTOT

π2

30

(kT )4

h̄3c5
.

In kg/m3, one can evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−19 J

eV

]4

(1.055× 10−34 J-s)
3

(2.998× 108 m/s)
5 .
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Checking the units,

[ρ] =
J4

J3-s3-m5-s−5
=

J-s2

m5

=

(
kg-m2-s−2

)
s2

m5
= kg/m

3
.

So, the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3
.

You were not expected to evaluate this, but with a calculator one would find

ρ = 2.10× 1018 kg/m
3
.

In g/cm3, one would evaluate this expression by

ρ =

(
17

1

4

)
π2

30

[
200× 106 eV× 1.602× 10−12 erg

eV

]4

(1.055× 10−27 erg-s)
3

(2.998× 1010 cm/s)
5 .

Checking the units,

[ρ] =
erg4

erg3-s3-cm5-s−5
=

erg-s2

cm5

=

(
g-cm2-s−2

)
s2

cm5
= g/cm

3
.

So, in this case the final answer would be

ρ =

(
17

1

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

No evaluation was requested, but with a calculator you would find

ρ = 2.10× 1015 g/cm
3
,
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which agrees with the answer above.

Note: A common mistake was to leave out the conversion factor 1.602× 10−19 J/eV
(or 1.602 × 10−12 erg/eV), and instead to use h̄ = 6.582× 10−16 eV-s. But if one
works out the units of this answer, they turn out to be eV-sec2/m5 (or eV-sec2/cm5),
which is a most peculiar set of units to measure a mass density.

In the NTWI, we have in addition the contribution to the mass density from R+-R−

pairs, which would act just like e+-e− pairs or µ+-µ− pairs, with g = 31
2 . Thus

gTOT = 20 3
4 , so

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−19

]4
(1.055× 10−34)

3
(2.998× 108)

5

kg

m3

or

ρ =

(
20

3

4

)
π2

30

[
200× 106 × 1.602× 10−12

]4
(1.055× 10−27)

3
(2.998× 1010)

5

g

cm3
.

Numerically, the answer in this case would be

ρNTWI = 2.53× 1018 kg/m
3

= 2.53× 1015 g/cm
3
.

(b) As long as the universe is in thermal equilibrium, entropy is conserved. The entropy
in a given volume of the comoving coordinate system is

a3(t)s Vcoord ,

where s is the entropy density and a3Vcoord is the physical volume. So

a3(t)s

is conserved. After the neutrinos decouple,

a3sν and a3sother

are separately conserved, where sother is the entropy of everything except neutrinos.

Note that s can be written as
s = gAT 3 ,



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 46

where A is a constant. Before the disappearance of the e, µ, R, and π particles from
the thermal equilibrium radiation,

sν =

(
5

1

4

)
AT 3

sother =

(
15

1

2

)
AT 3 .

So
sν

sother
=

5 1
4

15 1
2

.

If a3sν and a3sother are conserved, then so is sν/sother. By today, the entropy previ-
ously shared among the various particles still in equilibrium after neutrino decoupling
has been transfered to the photons so that

sother = sphotons = 2AT 3
γ .

The entropy in neutrinos is still

sν =

(
5

1

4

)
AT 3

ν .

Since sν/sother is constant we know that(
5 1

4

)
T 3
ν

2T 3
γ

=
sν

sother
=

5 1
4

15 1
2

=⇒ Tν =

(
4

31

)1/3

Tγ .

(c) One can write

n = g∗BT 3 ,

where B is a constant. Here g∗γ = 2, and g∗ν = 6 × 3
4 = 4 1

2 . In the standard model,
one has today

nν
nγ

=
g∗νT

3
ν

g∗γT
3
γ

=

(
4 1

2

)
2

4

11
=

9

11
.
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In the NTWI,

nν
nγ

=

(
4 1

2

)
2

4

31
=

9

31
.

(d) At kT = 200 MeV, the thermal equilibrium ratio of neutrons to protons is given by

nn

np
= e−1.29 MeV/200 MeV ≈ 1 .

In the standard theory this ratio would decrease rapidly as the universe cooled and
kT fell below the p-n mass difference of 1.29 MeV, but in the NTWI the ratio freezes
out at the high temperature corresponding to kT = 200 MeV, when the ratio is
about 1. When kT falls below 200 MeV in the NTWI, the neutrino interactions

n+ νe ↔ p+ e− and n+ e+ ↔ p+ ν̄e

that maintain the thermal equilibrium balance between protons and neutrons no
longer occur at a significant rate, so the ratio n/np is no longer controlled by ther-
mal equilibrium. After kT falls below 200 MeV, the only process that can convert
neutrons to protons is the rather slow process of free neutron decay, with a decay
time τd of about 890 s. Thus, when the deuterium bottleneck breaks at about 200
s, the number density of neutrons will be considerably higher than in the standard
model. Since essentially all of these neutrons will become bound into He nuclei, the
higher neutron abundance of the NTWI implies a

higher predicted He abundance.

To estimate the He abundance, note that if we temporarily ignore free neutron decay,
then the neutron-proton ratio would be frozen at about 1 and would remain 1 until
the time of nucleosynthesis. At the time of nucleosynthesis essentially all of these
neutrons would be bound into He nuclei (each with 2 protons and 2 neutrons). For
an initial 1:1 ratio of neutrons to protons, all the neutrons and protons can be bound
into He nuclei, with no protons left over in the form of hydrogen, so Y would equal
1. However, the free neutron decay process will cause the ratio nn/np to fall below
1 before the start of nucleosynthesis, so the predicted value of Y would be less than
1.

To calculate how much less, note that Ryden estimates the start of nucleosynthe-
sis at the time when the temperature reaches Tnuc, which is the temperature for
which a thermal equilibrium calculation gives nD/nn = 1. This corresponds to what
Weinberg refers to as the breaking of the deuterium bottleneck. The temperature
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Tnuc is calculated in terms of η = nB/nγ and physical constants, so it would not be
changed by the NTWI. The time when this temperature is reached, however, would
be changed slightly by the change in the ratio Tν/Tγ . Since this effect is rather
subtle, no points will be taken off if you omitted it. However, to be as accurate
as possible, one should recognize that nucleosynthesis occurs during the radiation-
dominated era, but long after the e+-e− pairs have disappeared, so the black-body
radiation consists of photons at temperature Tγ and neutrinos at a lower temperature
Tν . The energy density is given by

u =
π2

30

(kTγ)4

(h̄c)3

[
2 +

(
21

4

)(
Tν
Tγ

)4
]
≡ geff

π2

30

(kTγ)4

(h̄c)3
,

where

geff = 2 +

(
21

4

)(
Tν
Tγ

)4

.

For the standard model

gsm
eff = 2 +

(
21

4

)(
4

11

)4/3

,

and for the NTWI

gNTWI
eff = 2 +

(
21

4

)(
4

31

)4/3

.

The relation between time and temperature in a flat radiation-dominated universe
is given in the formula sheets as

kT =

(
45h̄3c5

16π3gG

)1/4
1√
t
.

Thus,

t ∝ 1

g
1/2
eff T 2

.

In the standard model Ryden estimates the time of nucleosynthesis as tsmnuc ≈ 200 s,
so in the NTWI it would be longer by the factor

tNTWI
nuc =

√
gsm

eff

gNTWI
eff

tsmnuc .

While of coure you were not expected to work out the numerics, this gives

tNTWI
nuc = 1.20 tsmnuc .
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Note that Ryden gives tnuc ≈ 200s, while Weinberg places it at 3 3
4 minutes ≈ 225 s,

which is close enough.

To follow the effect of this free decay, it is easiest to do it by considering the ratio
neutrons to baryon number, nn/nB , since nB does not change during this period.
At freeze-out, when kT ≈ 200 MeV,

nn
nB
≈ 1

2
.

Just before nucleosynthesis, at time tnuc, the ratio will be

nn
nB
≈ 1

2
e−tnuc/τd .

If free decay is ignored, we found Y = 1. Since all the surviving neutrons are bound
into He, the corrected value of Y is simply deceased by multiplying by the fraction
of neutrons that do not undergo decay. Thus, the prediction of NTWI is

Y = e−tnuc/τd = exp

−
√

gsm
eff

gNTWI
eff

200

890

 ,

where gsm
eff and gNTWI

eff are given above. When evaluated numerically, this would give

Y = Predicted He abundance by weight ≈ 0.76 .

PROBLEM 9: DOUBLING OF ELECTRONS (10 points)

The entropy density of black-body radiation is given by

s = g

[
2π2

45

k4

(h̄c)3

]
T 3

= g C T 3 ,

where C is a constant. At the time when the electron-positron pairs disappear,
the neutrinos are decoupled, so their entropy is conserved. All of the entropy from
electron-positron pairs is given to the photons, and none to the neutrinos. The same
will be true here, for both species of electron-positron pairs.

The conserved neutrino entropy can be described by Sν ≡ a3sν , which indicates the
entropy per cubic notch, i.e., entropy per unit comoving volume. We introduce the
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notation n− and n+ for the new electron-like and positron-like particles, and also

the convention that

Primed quantities: values after e+e−n+n− annihilation

Unprimed quantities: values before e+e−n+n− annihilation.

For the neutrinos,

S′ν = Sν =⇒ gνC (a′T ′ν)
3

= gνC (aTν)
3

=⇒

a′T ′ν = aTν .

For the photons, before e+e−n+n− annihilation we have

Tγ = Te+e−n+n− = Tν ; gγ = 2, ge+e− = gn+n− = 7/2 .

When the e+e− and n+n− pairs annihilate, their entropy is added to the photons:

S′γ = Se+e− + Sn+n− + Sγ =⇒ 2C
(
a′T ′γ

)3
=

(
2 + 2 · 7

2

)
C (aTγ)

3
=⇒

a′T ′γ =

(
9

2

)1/3

aTγ ,

so aTγ increases by a factor of (9/2)1/3.

Before e+e− annihilation the neutrinos were in thermal equilibrium with the photons,

so Tγ = Tν . By considering the two boxed equations above, one has

T ′ν =

(
2

9

)1/3

T ′γ .

This ratio would remain unchanged until the present day.
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PROBLEM 10: TIME SCALES IN COSMOLOGY

(a) 1 sec. [This is the time at which the weak interactions begin to “freeze out”, so that
free neutron decay becomes the only mechanism that can interchange protons and
neutrons. From this time onward, the relative number of protons and neutrons is no
longer controlled by thermal equilibrium considerations.]

(b) 4 mins. [By this time the universe has become so cool that nuclear reactions are no
longer initiated.]

(c) 10−37 sec. [We learned in Lecture Notes 7 that kT was about 1 MeV at t = 1 sec.
Since 1 GeV = 1000 MeV, the value of kT that we want is 1019 times higher. In the
radiation-dominated era T ∝ a−1 ∝ t−1/2, so we get 10−38 sec.]

(d) 10,000 – 1,000,000 years. [This number was estimated in Lecture Notes 7 as 200,000
years.]

(e) 10−5 sec. [As in (c), we can use t ∝ T−2, with kT ≈ 1 MeV at t = 1 sec.]

PROBLEM 11: EVOLUTION OF FLATNESS (15 points)

(a) We start with the Friedmann equation from the formula sheet on the quiz:

H2 =

(
ȧ

a

)2

=
8π

3
Gρ− kc2

a2
.

The critical density is the value of ρ corresponding to k = 0, so

H2 =
8π

3
Gρc .

Using this expression to replace H2 on the left-hand side of the Friedmann equation,
and then dividing by 8πG/3, one finds

ρc = ρ− 3kc2

8πGa2
.

Rearranging,
ρ− ρc
ρ

=
3kc2

8πGa2ρ
.

On the left-hand side we can divide the numerator and denominator by ρc, and then
use the definition Ω ≡ ρ/ρc to obtain

Ω− 1

Ω
=

3kc2

8πGa2ρ
. (1)
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For a matter-dominated universe we know that ρ ∝ 1/a3(t), and so

Ω− 1

Ω
∝ a(t) .

If the universe is nearly flat we know that a(t) ∝ t2/3, so

Ω− 1

Ω
∝ t2/3 .

(b) Eq. (1) above is still true, so our only task is to re-evaluate the right-hand side. For
a radiation-dominated universe we know that ρ ∝ 1/a4(t), so

Ω− 1

Ω
∝ a2(t) .

If the universe is nearly flat then a(t) ∝ t1/2, so

Ω− 1

Ω
∝ t .

PROBLEM 12: THE SLOAN DIGITAL SKY SURVEY z = 5.82 QUASAR
(40 points)

(a) Since Ωm + ΩΛ = 0.35 + 0.65 = 1, the universe is flat. It therefore obeys a simple
form of the Friedmann equation,

H2 =

(
ȧ

a

)2

=
8π

3
G(ρm + ρΛ) ,

where the overdot indicates a derivative with respect to t, and the term proportional
to k has been dropped. Using the fact that ρm ∝ 1/a3(t) and ρΛ = const, the energy
densities on the right-hand side can be expressed in terms of their present values
ρm,0 and ρΛ ≡ ρΛ,0. Defining

x(t) ≡ a(t)

a(t0)
,

one has (
ẋ

x

)2

=
8π

3
G
(ρm,0
x3

+ ρΛ

)
=

8π

3
Gρc,0

(
Ωm,0
x3

+ ΩΛ,0

)
= H2

0

(
Ωm,0
x3

+ ΩΛ,0

)
.
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Here we used the facts that

Ωm,0 ≡
ρm,0
ρc,0

; ΩΛ,0 ≡
ρΛ

ρc,0
,

and

H2
0 =

8π

3
Gρc,0 .

The equation above for (ẋ/x)2 implies that

ẋ = H0 x

√
Ωm,0
x3

+ ΩΛ,0 ,

which in turn implies that

dt =
1

H0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

Using the fact that x changes from 0 to 1 over the life of the universe, this relation
can be integrated to give

t0 =

∫ t0

0

dt =
1

H0

∫ 1

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.

The answer can also be written as

t0 =
1

H0

∫ 1

0

xdx√
Ωm,0x+ ΩΛ,0x4

or

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + ΩΛ,0

,

where in the last answer I changed the variable of integration using

x =
1

1 + z
; dx = − dz

(1 + z)2
.
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Note that the minus sign in the expression for dx is canceled by the interchange of
the limits of integration: x = 0 corresponds to z = ∞, and x = 1 corresponds to
z = 0.

Your answer should look like one of the above boxed answers. You were not expected
to complete the numerical calculation, but for pedagogical purposes I will continue.
The integral can actually be carried out analytically, giving∫ 1

0

xdx√
Ωm,0x+ ΩΛ,0x4

=
2

3
√

ΩΛ,0

ln

(√
Ωm + ΩΛ,0 +

√
ΩΛ,0√

Ωm

)
.

Using
1

H0
=

9.778× 109

h0
yr ,

where H0 = 100h0 km-sec−1-Mpc−1, one finds for h0 = 0.65 that

1

H0
= 15.043× 109 yr .

Then using Ωm = 0.35 and ΩΛ,0 = 0.65, one finds

t0 = 13.88× 109 yr .

So the SDSS people were right on target.

(b) Having done part (a), this part is very easy. The dynamics of the universe is of
course the same, and the question is only slightly different. In part (a) we found the
amount of time that it took for x to change from 0 to 1. The light from the quasar
that we now receive was emitted when

x =
1

1 + z
,

since the cosmological redshift is given by

1 + z =
a(tobserved)

a(temitted)
.

Using the expression for dt from part (a), the amount of time that it took the universe
to expand from x = 0 to x = 1/(1 + z) is given by

te =

∫ te

0

dt =
1

H0

∫ 1/(1+z)

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

.
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Again one could write the answer other ways, including

t0 =
1

H0

∫ ∞
z

dz′

(1 + z′)
√

Ωm,0(1 + z′)3 + ΩΛ,0

.

Again you were expected to stop with an expression like the one above. Continuing,
however, the integral can again be done analytically:

∫ xmax

0

dx

x
√

Ωm,0
x3 + ΩΛ,0

=
2

3
√

ΩΛ,0

ln

(√
Ωm + ΩΛ,0x3

max +
√

ΩΛ,0 x
3/2
max√

Ωm

)
.

Using xmax = 1/(1 + 5.82) = .1466 and the other values as before, one finds

te =
0.06321

H0
= 0.9509× 109 yr .

So again the SDSS people were right.

(c) To find the physical distance to the quasar, we need to figure out how far light can
travel from z = 5.82 to the present. Since we want the present distance, we multiply
the coordinate distance by a(t0). For the flat metric

ds2 = −c2 dτ2 = −c2dt2 + a2(t)
{

dr2 + r2(dθ2 + sin2 θ dφ2)
}
,

the coordinate velocity of light (in the radial direction) is found by setting ds2 = 0,
giving

dr

dt
=

c

a(t)
.

So the total coordinate distance that light can travel from te to t0 is

`c =

∫ t0

te

c

a(t)
dt .

This is not the final answer, however, because we don’t explicitly know a(t). We
can, however, change variables of integration from t to x, using

dt =
dt

dx
dx =

dx

ẋ
.
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So

`c =
c

a(t0)

∫ 1

xe

dx

x ẋ
,

where xe is the value of x at the time of emission, so xe = 1/(1 + z). Using the
equation for ẋ from part (a), this integral can be rewritten as

`c =
c

H0a(t0)

∫ 1

1/(1+z)

dx

x2

√
Ωm,0
x3 + ΩΛ,0

.

Finally, then

`phys,0 = a(t0) `c =
c

H0

∫ 1

1/(1+z)

dx

x2

√
Ωm,0
x3 + ΩΛ,0

.

Alternatively, this result can be written as

`phys,0 =
c

H0

∫ 1

1/(1+z)

dx√
Ωm,0 x+ ΩΛ,0 x4

,

or by changing variables of integration to obtain

`phys,0 =
c

H0

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Continuing for pedagogical purposes, this time the integral has no analytic form, so
far as I know. Integrating numerically,∫ 5.82

0

dz′√
0.35 (1 + z′)3 + 0.65

= 1.8099 ,

and then using the value of 1/H0 from part (a),

`phys,0 = 27.23 light-yr .
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Right again.

(d) `phys,e = a(te)`c, so

`phys,e =
a(te)

a(t0)
`phys,0 =

`phys,0

1 + z
.

Numerically this gives

`phys,e = 3.992× 109 light-yr .

The SDSS announcement is still okay.

(e) The speed defined in this way obeys the Hubble law exactly, so

v = H0 `phys,0 = c

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Then

v

c
=

∫ z

0

dz′√
Ωm,0 (1 + z′)3 + ΩΛ,0

.

Numerically, we have already found that this integral has the value

v

c
= 1.8099 .

The SDSS people get an A.

PROBLEM 13: SECOND HUBBLE CROSSING (40 points)

(a) From the formula sheets, we know that for a flat radiation-dominated universe,

a(t) ∝ t1/2 .

Since

H =
ȧ

a
,
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(which is also on the formula sheets),

H =
1

2t
.

Then

`H(t) ≡ cH−1(t) = 2ct .

(b) We are told that the energy density is dominated by photons and neutrinos, so we
need to add together these two contributions to the energy density. For photons, the
formula sheet reminds us that gγ = 2, so

uγ = 2
π2

30

(kTγ)4

(h̄c)3
.

For neutrinos the formula sheet reminds us that

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
,

so

uν =
21

4

π2

30

(kTν)4

(h̄c)3
.

Combining these two expressions and using Tν = (4/11)1/3 Tγ , one has

u = uγ + uν =

[
2 +

21

4

(
4

11

)4/3
]
π2

30

(kTγ)4

(h̄c)3
,

so finally

g1 = 2 +
21

4

(
4

11

)4/3

.

(c) The Friedmann equation tells us that, for a flat universe,

H2 =
8π

3
Gρ ,

where in this case H = 1/(2t) and

ρ =
u

c2
= g1

π2

30

(kTγ)4

h̄3c5
.
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Thus (
1

2t

)2

=
8πG

3
g1
π2

30

(kTγ)4

h̄3c5
.

Solving for Tγ ,

Tγ =
1

k

(
45h̄3c5

16π3g1G

)1/4
1√
t
.

(d) The condition for Hubble crossing is

λ(t) = cH−1(t) ,

and the first Hubble crossing always occurs during the inflationary era. Thus any
Hubble crossing during the radiation-dominated era must be the second Hubble
crossing.

If λ is the present physical wavelength of the density perturbations under discussion,
the wavelength at time t is scaled by the scale factor a(t):

λ(t) =
a(t)

a(t0)
λ .

Between the second Hubble crossing and now, there have been no freeze-outs of
particle species. Today the entropy of the universe is still dominated by photons and
neutrinos, so the conservation of entropy implies that aTγ has remained essentially
constant between then and now. Thus,

λ(t) =
Tγ,0
Tγ(t)

λ .

Using the previous results for cH−1(t) and for Tγ(t), the condition λ(t) = cH−1(t)
can be rewritten as

kTγ,0

(
16π3g1G

45h̄3c5

)1/4 √
t λ = 2ct .

Solving for t, the time of second Hubble crossing is found to be

tH2(λ) = (kTγ,0λ)2

(
π3g1G

45h̄3c9

)1/2

.
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Extension: You were not asked to insert numbers, but it is of course interesting to
know where the above formula leads. If we take λ = 106 lt-yr, it gives

tH2(106 lt-yr) = 1.04× 107 s = 0.330 year .

For λ = 1 Mpc,
tH2(1 Mpc) = 1.11× 108 s = 3.51 year .

Taking λ = 2.5× 106 lt-yr, the distance to Andromeda, the nearest spiral galaxy,

tH2(2.5× 106 lt-yr) = 6.50× 107 sec = 2.06 year .

PROBLEM 14: NEUTRINO NUMBER AND THE NEUTRON/PROTON
EQUILIBRIUM

(a) From the chemical equilibrium equation on the front of the exam, the number den-
sities of neutrons and protons can be written as

nn = gn
(2πmnkT )3/2

(2πh̄)3
e(µn−mnc2)/kT

np = gp
(2πmpkT )3/2

(2πh̄)3
e(µp−mpc2)/kT ,

where gn = gp = 2. Dividing,

nn
np

=

(
mn

mp

)3/2

e−(∆E+µp−µn)/kT ,

where ∆E = (mn −mp)c
2 is the proton-neutron mass-energy difference. Approxi-

mating mn/mp ≈ 1, one has

nn
np

= e−(∆E+µp−µn)/kT .

The approximation mn/mp ≈ 1 is very accurate (0.14%), but is clearly not necessary.
Full credit was given whether or not this approximation was used.

(b) For any allowed chemical reaction, the sum of the chemical potentials on the two
sides must be equal. So, from

e+ + n←→ p+ ν̄e ,
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we can infer that
−µe + µn = µp − µν ,

which implies that

µn − µp = µe − µν .

(c) Applying the formula given in the problem to the number densities of electron neu-
trinos and the corresponding antineutrinos,

nν = g∗ν
ζ(3)

π2

(kT )3

(h̄c)3
eµν/kT

n̄ν = g∗ν
ζ(3)

π2

(kT )3

(h̄c)3
e−µν/kT ,

since the chemical potential for the antineutrinos (ν̄) is the negative of the chemical
potential for neutrinos. A neutrino has only one spin state, so gν = 3/4, where the
factor of 3/4 arises because neutrinos are fermions. Setting

x ≡ e−µν/kT

and

A ≡ 3

4

ζ(3)

π2

(kT )3

(h̄c)3
,

the number density equations can be written compactly as

nν =
A

x
, n̄ν = xA .

To express x in terms of the ratio n̄ν/nν , divide the second equation by the first to
obtain

n̄ν
nν

= x2 =⇒ x =

√
n̄ν
nν

.

Alternatively, x can be expressed in terms of the difference in number densities
n̄ν − nν by starting with

∆n = n̄ν − nν = xA− A

x
.

Rewriting the above formula as an explicit quadratic,

Ax2 −∆nx−A = 0 ,
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one finds

x =
∆n±

√
∆n2 + 4A2

2A
.

Since the definition of x implies x > 0, only the positive root is relevant. Since the

number of electrons is still assumed to be equal to the number of positrons, µe = 0,

so the answer to (b) reduces to µn − µp = −µν . From (a),

nn
np

= e−(∆E+µp−µn)/kT

= e−(∆E+µν)/kT

= xe−∆E/kT

=

√
n̄ν
nν

e−∆E/kT .

Alternatively, one can write the answer as

nn
np

=

√
∆n2 + 4A2 + ∆n

2A
e−∆E/kT ,

where

A ≡ 3

4

ζ(3)

π2

(kT )3

(h̄c)3
.

(d) For ∆n > 0, the answer to (c) implies that the ratio nn/np would be larger than in

the usual case (∆n = 0). This is consistent with the expectation that an excess of

antineutrinos will tend to cause p’s to turn into n’s according to the reaction

p+ ν̄e −→ e+ + n .

Since the amount of helium produced is proportional to the number of neutrons

that survive until the breaking of the deuterium bottleneck, starting with a higher

equilibrium abundance of neutrons will increase the production of helium.
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PROBLEM 15: THE EVENT HORIZON FOR OUR UNIVERSE (25 points)

(a) In a spherical pulse each light ray is moving radially outward, so dθ = dφ = 0. A
light ray travels along a null trajectory, meaning that ds2 = 0, so we have

ds2 = −c2 dt2 + a2(t) dr2 = 0 . (3.1)

from which it follows that
dr

dt
= ± c

a(t)
. (3.2)

We are interested in a radial pulse that starts at r = 0 at time t = t0, so the limiting
value of r is given by

rmax =

∫ ∞
t0

c

a(t)
dt . (3.3)

(b) Changing variables of integration to

x =
a(t)

a(t0)
, (3.4)

the integral becomes

rmax =

∫ ∞
1

c

a(t)

dt

dx
dx =

c

a(t0)

∫ ∞
1

1

x

dt

dx
dx , (3.5)

where we used the fact that t = t0 corresponds to x = a(t0)/a(t0) = 1. As given to
us on the formula sheet, the first-order Friedmann equation can be written as

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 . (3.6)

Using this substitution,

rmax =
c

a(t0)H0

∫ ∞
1

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

, (3.7)

where we have used Ωk,0 = 0, since the universe is taken to be flat.

(c) To find the value of the redshift for the light that we are presently receiving from
coordinate distance rmax, we can begin by noticing that the time of emission te can
be determined by the equation which implies that the coordinate distance traveled
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by a light pulse between times te and t0 must equal rmax. Using Eq. (3.2) for the
coordinate velocity of light, this equation reads∫ t0

te

c

a(t)
dt = rmax . (3.8)

The “half-credit” answer to the quiz problem would include the above equation,
followed by the statement that the redshift zeh can be determined from

z =
a(t0)

a(te)
− 1 . (3.9)

The “full-credit” answer is obtained by changing the variable of integration as in
part (b), so Eq. (3.8) becomes

rmax =

∫ 1

xe

c

a(t)

dt

dx
dx

=
c

a(t0)

∫ 1

xe

1

x

dt

dx
dx ,

(3.10)

where xe is the value of x corresponding to t = te. Then using Eq. (3.6) with
Ωk,0 = 0, we find

rmax =
c

a(t0)H0

∫ 1

xe

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

. (3.11)

To complete the answer in this language, we use

z =
1

xe
− 1 . (3.12)

Eqs. (3.11) and (3.12) constitute a full answer to the question, but one could go
further and replace rmax using Eq. (3.7), finding∫ ∞

1

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

=

∫ 1

xe

dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.

(3.13)

In this form the answer depends only on the values of ΩX,0.

You were of course not asked to evaluate this formula numerically, but you might
be interested in knowing that the Planck 2013 values Ωm,0 = 0.315, Ωvac,0 = 0.685,
and Ωrad,0 = 9.2 × 10−5 lead to zeh = 1.87. Thus, no event that is happening now
(i.e., at the same value of the cosmic time) in a galaxy at redshift larger than 1.87
will ever be visible to us or our descendants, even in principle.
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PROBLEM 16: THE EFFECT OF PRESSURE ON COSMOLOGICAL EVO-
LUTION (25 points)

(a) (8 points) This problem is answered most easily by starting from the cosmological
formula for energy conservation, which I remember most easily in the form motivated
by dU = −p dV . Using the fact that the energy density u is equal to ρc2, the energy
conservation relation can be written

dU

dt
= −pdV

dt
=⇒ d

dt

(
ρc2a3

)
= −p d

dt

(
a3
)
.

Setting

ρ =
α

a8

for some constant α, the conservation of energy formula becomes

d

dt

(
αc2

a5

)
= −p d

dt

(
a3
)
,

which implies

−5
αc2

a6

da

dt
= −3pa2 da

dt
.

Thus

p =
5

3

αc2

a8
=

5

3
ρc2 .

Alternatively, one may start from the equation for the time derivative of ρ,

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Since ρ = α
a8 , we take the time derivative to find ρ̇ = −8(ȧ/a)ρ, and therefore

−8
ȧ

a
ρ = −3

ȧ

a

(
ρ+

p

c2

)
,

and therefore

p =
5

3
ρc2.

(b) (9 points) For a flat universe, the Friedmann equation reduces to(
ȧ

a

)2

=
8π

3
Gρ .
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Using ρ ∝ 1/a8, this implies that

ȧ =
β

a3
,

for some constant β. Rewriting this as

a3 da = β dt ,

we can integrate the equation to give

1

4
a4 = βt+ const ,

where the constant of integration has no effect other than to shift the origin of the
time variable t. Using the standard big bang convention that a = 0 when t = 0, the
constant of integration vanishes. Thus,

a ∝ t1/4 .

The arbitrary constant of proportionality in this answer is consistent with the
wording of the problem, which states that “You should be able to determine the
function a(t) up to a constant factor.” Note that we could have expressed the
constant of proportionality in terms of the constant α that we used in part (a),
but there would not really be any point in doing that. The constant α was not a
given variable. If the comoving coordinates are measured in “notches,” then a is
measured in meters per notch, and the constant of proportionality in our answer can
be changed by changing the arbitrary definition of the notch.

(c) (8 points) We start from the conservation of energy equation in the form

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Substituting ρ̇ = −n(ȧ/a)ρ and p = (2/3)ρc2, we have

−nHρ = −3H

(
5

3
ρ

)
and therefore

n = 5.
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PROBLEM 17: THE FREEZE-0UT OF A FICTITIOUS PARTICLE X (25
points)

(a) (5 points) The formula sheet tells us that the energy density of black-body radiation
is

u = g
π2

30

(kT )4

(h̄c)3
,

where

g ≡
{

1 per spin state for bosons (integer spin)
7/8 per spin state for fermions (half-integer spin) .

Since the X is spin-1, and 1 is an integer, the X particles are bosons and g = 1 per
spin state. There are 3 species, X+, X−, and X0, and each species we are told has
three spin states, so there are a total of 9 spin states, so g = 9. Thus,

u = 9
π2

30

(kT )4

(h̄c)3
.

Alternatively, one could count the X+ and X− as one species with a distinct
particle and antiparticle, so gX+X− is given by

gX+X− = 1︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 3︸ ︷︷ ︸
Spin states

= 6 .

The X0 is its own antiparticle, which means that the particle/antiparticle factor is
one, so

gX0 = 1︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 1︸ ︷︷ ︸
Particle/

antiparticle

× 3︸ ︷︷ ︸
Spin states

= 3 ,

so the total g for X+, X−, and X0 is again equal to 9.

(b) (5 points) The formula sheet tells us that the number density of particles in black-
body radiation is

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
,

where

g∗ ≡
{

1 per spin state for bosons
3/4 per spin state for fermions .
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For bosons g∗ = g, so g∗ for the X particles is 9. Then

nX = 9
ζ(3)

π2

(kT )3

(h̄c)3
.

(c) (10 points) We are told that, when the X particles freeze out, all of their energy and
entropy is given to the photons. We use entropy rather than energy to determine
the final temperature of the photons, because the entropy in a comoving volume is
simply conserved, while the energy density varies as

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
.

Thus, to track the energy, we need to know exactly how p behaves, and the behavior
of p during freeze-out is complicated, and we have not calculated it in this course.

The formula sheet tells us that the entropy density of a constituent of black-body
radiation is given by

s = g
2π2

45

k4T 3

(h̄c)3
.

If we consider some fixed coordinate volume Vcoord, the corresponding physical vol-
ume is Vphys = Vcoord a

3(t), where a(t) is the scale factor. The total entropy of
neutrinos in Vcoord is then

Sν = gν
2π2

45

k4T 3
ν (t)

(h̄c)3
Vcoord a

3(t) .

The quantities Tν(t) and a(t) depend on time, but the expression on the right-hand-
side does not, since entropy is conserved. For brevity I will write

Sν = gνA(t)T 3
ν (t) , (1)

where

A(t) ≡ 2π2

45

k4

(h̄c)3
Vcoord a

3(t) .

The e+e− pairs and the X’s contribute to the black-body radiation only before
the freeze-out, when kT � 0.511 MeV/c2. Let tb denote any time before the freeze-
out. Before the freeze-out, the total entropy of photons, e+e− pairs, and X particles
is given by

Sbefore,γeX = (gγ + ge+e− + gX)A(tb)T
3
γ (tb) . (2)
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I can call the temperature Tγ , because the e+e− pairs and the X’s (as well as the
neutrinos) are all in thermal equilibrium at this point, so they all have the same
temperature.

Using ta to denote an arbitrary time after the freeze-out, the entropy of the
photons during this time period can be written

Safter,γ = gγA(ta)T 3
γ (ta) . (3)

But since the e+e− pairs and X particles give all their entropy to the photons, we
have

Safter,γ = Sbefore,γeX . (4)

Then using Eqs. (2) and (3) we find

gγA(ta)T 3
γ (ta) = (gγ + ge+e− + gX)A(tb)T

3
γ (tb) . (5)

We can rewrite the last factor in Eq. (5) by remembering that Eq. (1) holds at all
times, and that Tν(tb) = Tγ(tb). So,

A(tb)T
3
γ (tb) = A(tb)T

3
ν (tb) =

Sν
gν

= A(ta)T 3
ν (ta) . (6)

Substituting Eq. (6) into Eq. (5), we have

gγA(ta)T 3
γ (ta) = (gγ + ge+e− + gX)A(ta)T 3

ν (ta) ,

from which we see that

T 3
γ (ta) =

gγ + ge+e− + gX
gγ

T 3
ν (ta) ,

and therefore
Tν(ta)

Tγ(ta)
=

(
gγ

gγ + ge+e− + gX

)1/3

=

(
2

2 + 7
2 + 9

)1/3

=

(
4

29

)1/3

.

(d) (5 points) The answer would be the same, since it was completely determined by the
conservation equation, Eq. (4) in the above answer. Regardless of the order in which
the freeze-outs occurred, the total entropy from the e+e− pairs and the X’s would
ultimately be given to the photons, so the amount of heating of the photons would
be the same.
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PROBLEM 18: THE TIME td OF DECOUPLING (25 points)

(a) (5 points) If the entropy of photons is conserved, then the entropy density falls as

s ∝ 1

a3(t)
.

Since s ∝ T 3, it follows that

T ∝ 1

a(t)
.

Thus, the ratio of the scale factors is equal to the inverse of the ratio temperatures:

xd =
T0

Td
.

(b) (5 points) The formula sheet reminds us that

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 + Ωk,0x2 ,

where

Ωk,0 ≡ −
kc2

a2(t0)H2
0

= 1− Ωm,0 − Ωrad,0 − Ωvac,0 .

So for a flat universe Ωk,0 = 0, and we have

dx

dt
=
H0

x

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 .

(c) (5 points) The answer to part (b) can be rewritten as

dt =
x dx

H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.

td is the time that elapses from when the universe has x = 0 to when it has x = xd,
so

td =
1

H0

∫ xd

0

x dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4

.



8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, FALL 2018 p. 71

You were of course not asked to evaluate this integral numerically, but we will
do that now. We take T0 = 2.7255 K from Fixsen et al. (cited in Lecture Notes
6) and the Planck 2015 best fit values of H0 = 67.7 km-s−1-Mpc−1, Ωm,0 = 0.309,
Ωvac,0 = 0.691. The energy density of radiation (photons plus neutrinos) can then
be calculated to give Ωrad,0 = 9.2 × 10−5 (see Eq. (6.23) of Lecture Notes 6 and
the text of the 2nd paragraph of p. 12 of Lecture Notes 7). To keep our model
universe exactly flat, I am modifying Ωvac,0 to set it equal to 0.691−Ωrad,0, which is
well within the uncertainties. Numerical integration then gives 366,000 years, very
close to our original estimate. Of course this number is still approximate, since we
started with Td ≈ 3000 K. In any case, the decoupling of the photons in the CMB is
actually a gradual process. In 2003 I modified a standard program called CMBFast
to calculate the probability distribution of the time of last scattering (published in
https://arxiv.org/abs/astro-ph/0306275), with the following results:

The parameters used were Ωvac,0 = 0.70, Ωm,0 = 0.30, H0 = 68 km-s−1-Mpc−1. The
peak of the curve is at 367,000 years, and the median is at 388,000 years.

(d) (10 points) The derivation starts with the first-order Friedmann equation. Since we
are describing a flat universe, we can start with the Friedmann equation for a flat
universe,

H2 =
8π

3
Gρ .

Now we use the facts that ρm ∝ 1/a3, ρrad ∝ 1/a4, ρvac ∝ 1, and ρf ∝ 1/a8 to write

H2 =
8π

3
G
[ρm,0
x3

+
ρrad,0

x4
+ ρvac,0 +

ρf,0
x8

]
.

Then we use

ρm,0 = ρcΩm,0 =
3H2

0

8πG
Ωm,0,

https://arxiv.org/abs/astro-ph/0306275
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with similar relations for the other components of the mass density, to rewrite the
Friedmann equation as

H2 = H2
0

[
Ωm,0
x3

+
Ωrad,0

x4
+ Ωvac,0 +

Ωf,0
x8

]
.

Next we rewrite H2 as

H2 =

(
ȧ

a

)2

=

(
ẋ

x

)2

,

so (
ẋ

x

)2

= H2
0

[
Ωm,0
x3

+
Ωrad,0

x4
+ Ωvac,0 +

Ωf,0
x8

]
,

which can be rewritten as

x
dx

dt
= H0

√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 +

Ωf,0
x4

.

From here the derivation is identical to that in part (c), leading to

td =
1

H0

∫ xd

0

x dx√
Ωm,0x+ Ωrad,0 + Ωvac,0x4 +

Ωf,0
x4

,

which can also be written more neatly as

td =
1

H0

∫ xd

0

x3 dx√
Ωm,0x5 + Ωrad,0x4 + Ωvac,0x8 + Ωf,0

.
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Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (20 points)

(a) (5 points) Which one of the following statements about CMB is NOT correct?

(i) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(ii) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is <T> = 2.725K.

(iii) After the dipole distortion of the CMB is subtracted away, the temperature of
the CMB varies by 0.3 microKelvin across the sky.

(iv) The photons of the CMB have mostly been traveling on straight lines since they
were last scattered at t ≈ 370, 000 yr, at a location called the surface of last
scattering.

(b) (5 points) The nonuniformities in the cosmic microwave background allow us to
measure the ripples in the mass density of the universe at the time when the plasma
combined to form neutral atoms, about 300,000 - 400,000 years after the big bang.
These ripples are crucial for understanding what happened later, since they are the
seeds which led to the complicated tapestry of galaxies, clusters of galaxies, and
voids. Which of the following sentences describes how these ripples are created in
the context of inflationary models:

(i) Magnetic monopoles can form randomly during the grand unified theory phase
transition, resulting in nonuniformities in the mass density.

(ii) Cosmic strings, which are linelike topological defects, can form randomly during
the grand unified theory phase transition, resulting in nonuniformities in the
mass density.

(iii) They are generated by quantum fluctuations during inflation.

(iv) Since the early universe was very hot, there were large thermal fluctuations
which ultimately evolved into the ripples in the mass density.

— Problem 1 continues on next page. —

* This version includes corrections that were announced during the quiz.
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(c) (5 points) In Chapter 8 of The First Three Minutes, Steven Weinberg describes
the future of the universe (assuming, as was thought then to be the case, that the
cosmological constant is zero). One possibility that he discusses is that the cosmic
matter density could be greater than the critical density. Assuming that we live in
such a universe, which of the following statements is NOT true?

(i) The universe is finite and its expansion will eventually cease, giving way to an
accelerating contraction.

(ii) Three minutes after the temperature reaches a thousand million degrees (109 K),
the laws of physics guarantee that the universe will crunch, and time will stop.

(iii) During at least the early part of the contracting phase, we will be able to observe
both redshifts and blueshifts.

(iv) When the universe has recontracted to one-hundredth its present size, the radi-
ation background will begin to dominate the sky, with a temperature of about
300 K.

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(iv) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(v) Photons from overdense regions at the surface of last scattering appear redder
because they must climb out of the gravitational potential well.

(vi) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

— End of Problem 1. —
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PROBLEM 2: TIME EVOLUTION OF A UNIVERSE INCLUDING A HY-
POTHETICAL KIND OF MATTER (30 points)

Suppose that a flat universe includes nonrelativistic matter, radiation, and also mys-
ticium, where the mass density of mysticium behaves as

ρmyst ∝
1

a5(t)

as the universe expands. In this problem we will define

x(t) ≡ a(t)

a(t0)
,

where t0 is the present time. For the following questions, you need not evaluate any
of the integrals that might arise, but they must be integrals of explicit functions with
explicit limits of integration; remember that a(t) is not given. You may express your
answers in terms of the present value of the Hubble expansion rate, H0, and the various
contributions to the present value of Ω: Ωm,0, Ωrad,0, and Ωmyst,0.

(a) (7 points) Write an expression for the Hubble expansion rate H(x).

(b) (7 points) Write an expression for the current age of the universe.

(c) (3 points) Write an expression for the time t(x) in terms of the value of x.

(d) (3 points) Write an expression for the total mass density ρ(x) as a function of x.

(e) (10 points) Write an expression for present value of the physical horizon distance,
`p,hor(t0).

PROBLEM 3: PROPERTIES OF BLACK-BODY RADIATION (25 points)

The following problem was Problem 6 of the Review Problems for Quiz 3.

In answering the following questions, remember that you can refer to the formulas on
the formula sheets, circulated separately. Since you were not asked to bring calculators,
you may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of photons at
temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has spin
zero, so there is only one spin state. Would the average energy per particle and
entropy per particle be different from the answers you gave in parts (a) and (b)? If
so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos at tempera-
ture T . These particles are fermions with spin 1/2, and we will assume that they
are massless and have only one possible spin state. What is the average energy per
particle for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation of
neutrinos, as described in part (d)?
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PROBLEM 4: THE CONSEQUENCES OF AN ALT-PHOTON (25 points)

Suppose that, in addition to the particles that are known to exist, there also existed
an alt-photon, which has exactly the properties of a photon: it is massless, has two spin
states (or polarization states), and has the same interactions with other particles that
photons do. Like photons, it is its own antiparticle.

(a) (5 points) In thermal equilibrium at temperature T , what is the total energy density
of alt-photons?

(b) (5 points) In thermal equilibrium at temperature T , what is the number density of
alt-photons?

(c) (10 points) In this situation, what would be the temperature ratios Tν/Tγ and
Tν/Taltγ today?

(d) (5 points) Would the existence of this particle increase or decrease the abundance of
helium, or would it have no effect?
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Problem Maximum Score Initials

1 20

2 30

3 25

4 25

TOTAL 100
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Please answer all questions in this stapled booklet.

PROBLEM 1: DID YOU DO THE READING? (20 points)

(a) (5 points) Which one of the following statements about CMB is NOT correct?

(i) The dipole distortion is a simple Doppler shift, caused by the net motion of the
observer relative to a frame of reference in which the CMB is isotropic.

(ii) After the dipole distortion of the CMB is subtracted away, the mean temperature
averaging over the sky is <T> = 2.725K.

(iii) After the dipole distortion of the CMB is subtracted away, the temperature of

the CMB varies by 0.3 microKelvin across the sky.

(iv) The photons of the CMB have mostly been traveling on straight lines since they
were last scattered at t ≈ 370, 000 yr, at a location called the surface of last
scattering.

[Comment: The actual variation is about 30 microKelvin, or maybe a few times that
much. Ryden quotes the COBE root mean square fractional variation of the CMB
temperature as 〈(

δT

T

)2
〉1/2

= 1.1× 10−5

as Eq. (8.8) (2nd Edition), which gives a value of about 30 microKelvin, given that
T ≈ 3 K. In Lecture Notes 2 we quoted a value of 4.14× 10−5 computed from Planck
data. The root mean square fluctuations increase with better angular resolution,
because fluctuations with small angular wavelengths are not seen unless the resolution
is high.
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(b) (5 points) The nonuniformities in the cosmic microwave background allow us to
measure the ripples in the mass density of the universe at the time when the plasma
combined to form neutral atoms, about 300,000 - 400,000 years after the big bang.
These ripples are crucial for understanding what happened later, since they are the
seeds which led to the complicated tapestry of galaxies, clusters of galaxies, and
voids. Which of the following sentences describes how these ripples are created in
the context of inflationary models:

(i) Magnetic monopoles can form randomly during the grand unified theory phase
transition, resulting in nonuniformities in the mass density.

(ii) Cosmic strings, which are linelike topological defects, can form randomly during
the grand unified theory phase transition, resulting in nonuniformities in the
mass density.

(iii) They are generated by quantum fluctuations during inflation.

(iv) Since the early universe was very hot, there were large thermal fluctuations
which ultimately evolved into the ripples in the mass density.

(c) (5 points) In Chapter 8 of The First Three Minutes, Steven Weinberg describes
the future of the universe (assuming, as was thought then to be the case, that the
cosmological constant is zero). One possibility that he discusses is that the cosmic
matter density could be greater than the critical density. Assuming that we live in
such a universe, which of the following statements is NOT true?

(i) The universe is finite and its expansion will eventually cease, giving way to an
accelerating contraction.

(ii) Three minutes after the temperature reaches a thousand million degrees (109 K),

the laws of physics guarantee that the universe will crunch, and time will stop.

(iii) During at least the early part of the contracting phase, we will be able to observe
both redshifts and blueshifts.

(iv) When the universe has recontracted to one-hundredth its present size, the radi-
ation background will begin to dominate the sky, with a temperature of about
300 K.

[Comment: Weinberg is very clear no speculations about the end of the universe are
guaranteed to be true: “Does time really have to stop some three minutes after the
temperature reaches a thousand million degrees? Obviously, we cannot be sure. All
the uncertainties that we met in the preceding chapter, in trying to explore the first
hundredth of a second, will return to perplex us as we look into the last hundredth of
a second.”]



8.286 QUIZ 3 SOLUTIONS, FALL 2018 p. 3

(d) (5 points) Which of the following describes the Sachs-Wolfe effect?

(i) Photons from fluid which had a velocity toward us along the line of sight appear
redder because of the Doppler effect.

(ii) Photons from fluid which had a velocity toward us along the line of sight appear
bluer because of the Doppler effect.

(iii) Photons traveling toward us from the surface of last scattering appear redder
because of absorption in the intergalactic medium.

(iv) Photons traveling toward us from the surface of last scattering appear bluer
because of absorption in the intergalactic medium.

(v) Photons from overdense regions at the surface of last scattering appear redder

because they must climb out of the gravitational potential well.

(vi) Photons from overdense regions at the surface of last scattering appear bluer
because they must climb out of the gravitational potential well.

[Comment: Ryden discusses the Sachs-Wolfe effect on pp. 161–162 (2nd Edition).

— End of Problem 1. —
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PROBLEM 2: TIME EVOLUTION OF A UNIVERSE INCLUDING A HY-
POTHETICAL KIND OF MATTER (30 points)

Suppose that a flat universe includes nonrelativistic matter, radiation, and also mys-
ticium, where the mass density of mysticium behaves as

ρmyst ∝
1

a5(t)

as the universe expands. In this problem we will define

x(t) ≡ a(t)

a(t0)
,

where t0 is the present time. For the following questions, you need not evaluate any
of the integrals that might arise, but they must be integrals of explicit functions with
explicit limits of integration; remember that a(t) is not given. You may express your
answers in terms of the present value of the Hubble expansion rate, H0, and the various
contributions to the present value of Ω: Ωm,0, Ωrad,0, and Ωmyst,0.

(a) (7 points) Write an expression for the Hubble expansion rate H(x).

(b) (7 points) Write an expression for the current age of the universe.

(c) (3 points) Write an expression for the time t(x) in terms of the value of x.

(d) (3 points) Write an expression for the total mass density ρ(x) as a function of x.

(e) (10 points) Write an expression for present value of the physical horizon distance,
`p,hor(t0).

(a) Since the universe is flat, the first Friedmann equation becomes

H2 =
8π

3
Gρ ,

but then we can write ρ as

H2 =
8π

3
G

{
ρm,0

[
a(t0)

a(t)

]3

+ ρrad,0

[
a(t0)

a(t)

]4

+ ρmyst,0

[
a(t0)

a(t)

]5
}

.

Now use

ρc,0 =
3H2

0

8πG
and Ω ≡ ρ

ρc
,
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so

H2 =
H2

0

ρc,0

{
ρm,0

[
a(t0)

a(t)

]3

+ ρrad,0

[
a(t0)

a(t)

]4

+ ρmyst,0

[
a(t0)

a(t)

]5
}

= H2
0

{
Ωm,0
x3

+
Ωrad,0

x4
+

Ωmyst,0

x5

}
.

Finally,

H(x) =
H0

x2

√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x
.

(b) To find the current age t0, we start with

H =
ȧ

a
=
ẋ

x
=⇒ dx

dt
= xH =⇒ dt =

dx

xH
.

So t0 can be found by integrating over the range of x, from 0 to 1:

t0 =

∫ 1

0

dx

xH(x)

=
1

H0

∫ 1

0

xdx√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

.

(c) To find the time t corresponding to some value of x other than 1, one simply integrates
dt from x′ = 0 to x′ = x:

t(x) =

∫ x

0

dx′

x′H(x′)

=
1

H0

∫ x

0

x′ dx′√
Ωm,0x′ + Ωrad,0 +

Ωmyst,0

x′

.

(d) From the first Friedmann equation,

H2 =
8π

3
Gρ =⇒ ρ =

3

8πG
H2(x) .
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Given the answer in part (a), this becomes

ρ(x) =
3

8πG

H2
0

x4

[
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

]
.

(e) The general formula for the physical horizon distance is given on the formula sheet:

`p,hor(t) = a(t)

∫ t

0

c

a(t′)
dt′ .

Here we are not given the function a(t), but we can change the variable of integration
to integrate over x:

dt′ =
dt′

da
da =

1

ȧ
da =

1

a

a

ȧ
da =

da

aH(x)
.

So

`p,hor(t0) = a(t0)

∫ a(t0)

0

cda

a2H(a)

=

∫ 1

0

cdx

x2H(x)

=
c

H0

∫ 1

0

dx√
Ωm,0x+ Ωrad,0 +

Ωmyst,0

x

.
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PROBLEM 3: PROPERTIES OF BLACK-BODY RADIATION (25 points)

The following problem was Problem 6 of the Review Problems for Quiz 3.

In answering the following questions, remember that you can refer to the formulas on
the formula sheets, circulated separately. Since you were not asked to bring calculators,
you may leave your answers in the form of algebraic expressions, such as π32/

√
5ζ(3).

(a) (5 points) For the black-body radiation (also called thermal radiation) of photons at
temperature T , what is the average energy per photon?

(b) (5 points) For the same radiation, what is the average entropy per photon?

(c) (5 points) Now consider the black-body radiation of a massless boson which has spin
zero, so there is only one spin state. Would the average energy per particle and
entropy per particle be different from the answers you gave in parts (a) and (b)? If
so, how would they change?

(d) (5 points) Now consider the black-body radiation of electron neutrinos at tempera-
ture T . These particles are fermions with spin 1/2, and we will assume that they
are massless and have only one possible spin state. What is the average energy per
particle for this case?

(e) (5 points) What is the average entropy per particle for the black-body radiation of
neutrinos, as described in part (d)?

Solution:

(a) The average energy per photon is found by dividing the energy density by the number
density. The photon is a boson with two spin states, so g = g∗ = 2. Using the
formulas on the front of the exam,

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
π4

30ζ(3)
kT .

You were not expected to evaluate this numerically, but it is interesting to know that

E = 2.701 kT .

Note that the average energy per photon is significantly more than kT , which is often
used as a rough estimate.
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(b) The method is the same as above, except this time we use the formula for the entropy
density:

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=
2π4

45ζ(3)
k .

Numerically, this gives 3.602 k, where k is the Boltzmann constant.

(c) In this case we would have g = g∗ = 1. The average energy per particle and
the average entropy particle depends only on the ratio g/g∗, so there would be

no difference from the answers given in parts (a) and (b).

(d) For a fermion, g is 7/8 times the number of spin states, and g∗ is 3/4 times the
number of spin states. So the average energy per particle is

E =

g
π2

30

(kT )4

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

π2

30

(kT )4

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

180ζ(3)
kT .

Numerically, E = 3.1514 kT .

Warning: the Mathematician General has determined
that the memorization of this number may adversely
affect your ability to remember the value of π.

If one takes into account both neutrinos and antineutrinos, the average energy per
particle is unaffected — the energy density and the total number density are both
doubled, but their ratio is unchanged.
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Note that the energy per particle is higher for fermions than it is for bosons. This
result can be understood as a natural consequence of the fact that fermions must
obey the exclusion principle, while bosons do not. Large numbers of bosons can
therefore collect in the lowest energy levels. In fermion systems, on the other hand,
the low-lying levels can accommodate at most one particle, and then additional
particles are forced to higher energy levels.

(e) The values of g and g∗ are again 7/8 and 3/4 respectively, so

S =

g
2π2

45

k4T 3

(h̄c)3

g∗
ζ(3)

π2

(kT )3

(h̄c)3

=

7

8

2π2

45

k4T 3

(h̄c)3

3

4

ζ(3)

π2

(kT )3

(h̄c)3

=
7π4

135ζ(3)
k .

Numerically, this gives S = 4.202 k.



8.286 QUIZ 3 SOLUTIONS, FALL 2018 p. 10

PROBLEM 4: THE CONSEQUENCES OF AN ALT-PHOTON (25 points)

Suppose that, in addition to the particles that are known to exist, there also existed
an alt-photon, which has exactly the properties of a photon: it is massless, has two spin
states (or polarization states), and has the same interactions with other particles that
photons do. Like photons, it is its own antiparticle.

(a) (5 points) In thermal equilibrium at temperature T , what is the total energy density
of alt-photons?

(b) (5 points) In thermal equilibrium at temperature T , what is the number density of
alt-photons?

(c) (10 points) In this situation, what would be the temperature ratios Tν/Tγ and
Tν/Taltγ today?

(d) (5 points) Would the existence of this particle increase or decrease the abundance of
helium, or would it have no effect?

Solution:

(a) The energy density will be the same as for photons, since there is no difference. The
general formula is

u = g
π2

30

(kT )4

(h̄c)3
,

as given on the formula sheets, and g = 2 for alt-photons (or photons), since there
are two polarization states, and the particles are bosons. So

ualtγ =
π2

15

(kT )4

(h̄c)3
. (4.1)

(b) For the number density, the general formula is

n = g∗
ζ(3)

π2

(kT )3

(h̄c)3
,

where g∗ = 2 since again the alt-photons are bosons with two polarization states. So

naltγ = 2
ζ(3)

π2

(kT )3

(h̄c)3
. (4.2)
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(c) As in the actual scenario, the event that causes a temperature difference is the
disappearance of the electron-positron pairs from the thermal equilibrium mix, which
occurs as kT changes from values large compared to mec

2 = 0.511 MeV to values
that are small compared to it. The key point is that this disappearance occurs after
the neutrinos have decoupled from the other particles, so all of the entropy from the
electron-positron pairs is given to the photons, and none is given to the neutrinos.
In this case the entropy is given to both the photons and the alt-photons.

The general formula for entropy density is on the formula sheet, and it can be
rewritten as

s = AgT 3 , (4.3)

where

A =
2π2

45

k4

(h̄c)3
. (4.4)

The value of A will in fact not be needed for this problem.

Since the neutrinos have decoupled by the time the e+e− pairs disappear, the entropy
of neutrinos and the entropy of everything else will be separately conserved. Entropy
conservation means that the entropy per comoving volume does not change. During
the period before e+e− freeze-out, g is constant, so the constancy of entropy per
comoving volume implies that

S = sVphys = gT 3AVphys = ga3T 3AVcoord , (4.5)

so S/Vcoord = const implies that a3T 3 is constant, and so aT is constant. Here T
is the common temperature of photons, alt-photons, electrons and positrons, and
neutrinos, all of which were in thermal equilibrium during this period. Since aT is
constant during this period, we can give the constant a name,

aT = [aT ]before . (4.6)

For the neutrinos, the formula sheet tells us that

gν =
7

8︸ ︷︷ ︸
Fermion
factor

× 3︸ ︷︷ ︸
3 species
νe,νµ,ντ

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 1︸ ︷︷ ︸
Spin states

=
21

4
, (4.7)

while

ge+e− =
7

8︸ ︷︷ ︸
Fermion
factor

× 1︸ ︷︷ ︸
Species

× 2︸ ︷︷ ︸
Particle/

antiparticle

× 2︸ ︷︷ ︸
Spin states

=
7

2
. (4.8)
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Thus

gelse = gγ + galtγ + ge+e− = 2 + 2 +
7

2
=

15

2
. (4.9)

Thus before the e+e− freezeout, the two conserved quantities were

Sν
Vcoord

= Agν [aT ]3before ,
Selse

Vcoord
= Agelse[aT ]3before . (4.10)

After e+e− freezeout, the temperature of the neutrinos Tν will no longer be the
same as the temperature Tγ of the photons and alt-photons, and of course e+e−

pairs will no longer be present. But Tγ and Taltγ will be equal to each other, since
they have the same interactions; we know that the interactions of the photons keep
them in thermal equilibrium until tdecoupling ∼ 380, 000 years, so both the photons
and the alt-photons will remain in thermal equilibrium until long after the era of
e+e− freezeout, which is of order 1–10 seconds. Thus the two conserved quantities
will be

Sν
Vcoord

= Agν [aTν ]3after ,
Selse

Vcoord
= A(gγ + galtγ)[aTγ ]3after . (4.11)

By equating the values of Sν/Vcoord before and after, we see that

[aTν ]after = [aT ]before , (4.12)

and then by equating the values of Selse/Vcoord before and after, we see that

[aTγ ]after =

(
gelse

gγ + galtγ

)1/3

[aT ]before =

(
gelse

gγ + galtγ

)1/3

[aTν ]after , (4.13)

where we used Eq. (4.12) in the last step. It follows that

[
Tν
Tγ

]
after

=

(
gγ + galtγ

gelse

)1/3

=

(
2 + 2

15
2

)1/3

=

(
8

15

)1/3

. (4.14)

(d) It would increase the abundance of helium. The main effect of the alt-photon would
be to increase the expansion rate of the universe, which in turn would cause the
neutrinos to decouple earlier from the thermal equilibrium mix, which in turn would
mean that the ratio nn/np, the ratio of neutrons to protons, would become frozen
at a larger value. The increased expansion rate would also mean less time available
for free neutron decay, which further increases the number of neutrons that remain
when the temperature falls low enough for helium formation to complete. Essentially
all the neutrons become bound into helium, so more neutrons implies more helium.
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Problem Maximum Score Initials

1 20

2 30

3 25

4 25

TOTAL 100




