top of page

the standard model

matter

matter

 standard model

Proton  [T]

Check article  https://www.quantamagazine.org/inside-the-proton-the-most-complicated-thing-imaginable-20221019/?mc_cid=e8e39e38e1&mc_eid=d65e26ab04

Eveneens beschrijven :  de hypothese van proton decay (zie wikipedia)

proton.jpg

old concept

new insight

Creation

                   

or in another presentation way :

Crossing

neutron.jpg
SM107 The Standard Model.jpg
proton.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg

N

P

SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM13 time and space.jpg

Decay

 

The proton is a stable element and has normally no decay. The baryon number conservation law prevents proton decay.

Some beyond-the-Standard Model grand unified theories (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the Higgs particlemagnetic monopoles, or new X bosons with a half-life of 1031 to 1036 years.

For comparison, the universe is roughly 10¹⁰ years old. [1] To date, all attempts to observe new phenomena predicted by GUTs (like proton decay or the existence of magnetic monopoles) have failed.

Quantum tunnelling may be one of the mechanisms of proton decay. [2] [3] [4]

 

Quantum gravity [5]  (via virtual black holes and Hawking radiation) may also provide a venue of proton decay at magnitudes or lifetimes well beyond the GUT scale decay range above, as well as extra dimensions in supersymmetry. [6] [7] [8] [9]

SM124 proton naar neutron.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
SM107 The Standard Model.jpg
cosmos.gif

copyright :  Quanta Magazine

Recent Developments

- Evidence for intrinsic charm quarks in the proton.  NNPDF collaboration, Nature 608, 483–487 (2022). https://doi.org/10.1038/s41586-022-04998-2.  (2022) 

References

[1]  Francis, Matthew R. "Do protons decay?". symmetry magazine. Retrieved 2020-11-12.

[2]  Talou, P.; Carjan, N.; Strottman, D. (1998). "Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei". Physical Review C. 58 (6): 3280–3285. arXiv:nucl-th/9809006Bibcode:1998PhRvC..58.3280Tdoi:10.1103/PhysRevC.58.3280S2CID 119075457.

[3]  "adsabs.harvard.edu".

[4]  Trixler, F. (2013). "Quantum Tunnelling to the Origin and Evolution of Life". Current Organic Chemistry. 17 (16): 1758–1770. doi:10.2174/13852728113179990083PMC 3768233PMID 24039543.

[5]  Bambi, Cosimo; Freese, Katherine (2008). "Dangerous implications of a minimum length in quantum gravity". Classical and Quantum Gravity. 25 (19): 195013. arXiv:0803.0749Bibcode:2008CQGra..25s5013Bdoi:10.1088/0264-9381/25/19/195013hdl:2027.42/64158S2CID 2040645.

[6]  Adams, Fred C.; Kane, Gordon L.; Mbonye, Manasse; Perry, Malcolm J. (2001). "Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS". International Journal of Modern Physics A. 16 (13): 2399–2410. arXiv:hep-ph/0009154Bibcode:2001IJMPA..16.2399Adoi:10.1142/S0217751X0100369XS2CID 14989175.

[7]  Al-Modlej, Abeer; Alsaleh, Salwa; Alshal, Hassan; Ali, Ahmed Farag (2019). "Proton decay and the quantum structure of space–time". Canadian Journal of Physics. 97 (12): 1317–1322. arXiv:1903.02940Bibcode:2019CaJPh..97.1317Adoi:10.1139/cjp-2018-0423hdl:1807/96892S2CID 119507878.

[8]  Giddings, Steven B. (1995). "The black hole information paradox". arXiv:hep-th/9508151.

[9]  Alsaleh, Salwa; Al-Modlej, Abeer; Farag Ali, Ahmed (2017). "Virtual black holes from the generalized uncertainty principle and proton decay". Europhysics Letters. 118 (5): 50008. arXiv:1703.10038Bibcode:2017EL....11850008Adoi:10.1209/0295-5075/118/50008S2CID 119369813.

bottom of page